

香港九龍 尖沙咀東部康莊道1號5樓 消防總部大廈

FIRE SERVICES DEPARTMENT LICENSING AND CERTIFICATION COMMAND

> Fire Services Headquarters Building, No. 1 Hong Chong Road, 5/F., Tsim Sha Tsui East, Kowloon, Hong Kong

本處檔號 Our Ref.: (16) in FP 314/07 V 來函檔號 Your Ref.-: 圖文傳真 Fax: 852 - 2723 2197 電 話 Tel. No.: 852 - 2733 7612 電 郵 Email: Lcpolic2@hkfsd.gov.hk

3 November 2005

Dear Sirs/Madams,

FSD Circular Letter No. 2/2005 Ventilation/Air Conditioning (V/AC) Control System

Ventilation/air conditioning control system is classified as fire service installation. The relevant specification is detailed in Section 5.25 of current Code of Practice for Minimum Fire Service Installations and Equipment.

In the past, there have been a lot of enquiries from the industry and trade in connection with how different configurations of air conditioning and mechanical ventilation (ACMV) system could meet the requirements of this control system. With a view to facilitating the industry and trade to understand the relevant requirements in a more comprehensible approach, a set of schematic drawings appended to this Circular Letter is prepared for general reference. These drawings are the results of co-operation between the industry and this Department after meticulous reviews and discussions on various probable scenarios. A summary of the requirements in table form for typical cases is also produced at Annex for easy reference.

The cases presented in these drawings basically cover different ACMV system layouts commonly encountered. However, should there be other cases requiring further clarifications, enquiry can be made to Fire Service Installations Division of this Department.

As this Circular Letter does not involve any change of current statutory requirements, it is effective immediately.

Yours faithfully,

(LO Chun-hung) for Director of Fire Services

Encl.

Case 1/1, 1/2, 1/3

Features / Highlights :

1. PAU is deemed to serve multi-compartments for cases 1/2 and 1/3.

	Operational Response to VAC Control			
Scenario	$PAU FCU \le 1000 \ l/s FCU > 1000 \ l/s$			
$PAU \le 1000 \ l/s$	Shutdown No need to shutdown Shutdown			
PAU > 1000 l/s	Shutdown	No need to shutdown	Shutdown	

Case 2/1

- 1. PAU is deemed to serve multi-compartments.
- 2. PAU can only be operated when the EAF is running.
- 3. Probe type smoke detector installed at the inlet side of the EAF activates the tripping function.

	Operational Response to VAC Control				
Scenario	PAU	EAF	$FCU \leq 1000 \ l/s$	FCU > 1000 l/s	
$PAU \leq 1000 \text{ l/s},$	Shutdown	No need to	No need to	Shutdown	
$EAF \leq 1000 \ l/s$		shutdown	shutdown		
$PAU \le 1000 \text{ l/s},$	Shutdown	Shutdown	No need to	Shutdown	
EAF > 1000 l/s			shutdown		
PAU > 1000 l/s,	Shutdown	No need to	No need to	Shutdown	
$EAF \leq 1000 \ l/s$		shutdown	shutdown		
PAU > 1000 l/s,	Shutdown	Shutdown	No need to	Shutdown	
EAF > 1000 l/s			shutdown		

Case 2/2

Features / Highlights :

- 1. PAU and EAF are serving multi-compartments.
- 2. PAU can only be operated when the EAF is running.
- 3. Probe type smoke detector installed at the inlet side of the EAF activates the tripping function.

	Operational Response to VAC Control				
Scenario	PAU	EAF	$FCU \leq 1000 \ l/s$	FCU > 1000 l/s	
$PAU \leq 1000 \text{ l/s},$	Shutdown	Shutdown	No need to	Shutdown	
$EAF \leq 1000 \ l/s$			shutdown		
$PAU \le 1000 \text{ l/s},$	Shutdown	Shutdown	No need to	Shutdown	
EAF > 1000 l/s			shutdown		
PAU > 1000 l/s,	Shutdown	Shutdown	No need to	Shutdown	
$EAF \leq 1000 \ l/s$			shutdown		
PAU > 1000 l/s,	Shutdown	Shutdown	No need to	Shutdown	
EAF > 1000 l/s			shutdown		

Case 3/1

Features / Highlights :

1. PAU is deemed to serve single compartment.

	Operational Response to VAC Control			
Scenario	PAU $FCU \le 1000 \ l/s$ $FCU > 1000 \ l/s$			
$PAU \le 1000 \ l/s$	No need to shutdown No need to shutdown Shutdown			
PAU > 1000 l/s	Shutdown	No need to shutdown	Shutdown	

Case 3/2, 3/3

Features / Highlights :

1. PAU is serving multi-compartments.

	Operational Response to VAC Control			
Scenario	PAU $FCU \le 1000 \text{ l/s}$ $FCU > 1000 \text{ l/s}$			
$PAU \le 1000 \ l/s$	Shutdown No need to shutdown Shutdown			
PAU > 1000 l/s	Shutdown	No need to shutdown	Shutdown	

Case 4/1

Features / Highlights :

- 1. PAU and EAF are serving single compartment.
- 2. PAU can only be operated when the EAF is running.
- 3. Probe type smoke detector installed nearest to EAF activates the tripping function.

	Operational Response to VAC Control				
Scenario	PAU	EAF	$FCU \leq 1000 \ l/s$	FCU > 1000 l/s	
$PAU \le 1000 \text{ l/s},$	No need to	No need to	No need to	Shutdown	
$EAF \le 1000 \ l/s$	shutdown	shutdown	shutdown		
$PAU \leq 1000 \text{ l/s},$	No need to	Shutdown	No need to	Shutdown	
EAF > 1000 l/s	shutdown		shutdown		
PAU > 1000 l/s,	Shutdown	No need to	No need to	Shutdown	
$EAF \le 1000 \ l/s$		shutdown	shutdown		
PAU > 1000 l/s,	Shutdown	Shutdown	No need to	Shutdown	
EAF > 1000 l/s			shutdown		

Case 4/2, 4/3

- 1. PAU and EAF are serving multi-compartments.
- 2. PAU can only be operated when the EAF is running.
- 3. Probe type smoke detector installed at the inlet side of the EAF activates the tripping function.

	Operational Response to VAC Control				
Scenario	PAU	EAF	$FCU \leq 1000 \ l/s$	FCU > 1000 l/s	
$PAU \leq 1000 \text{ l/s},$	Shutdown	Shutdown	No need to	Shutdown	
$EAF \leq 1000 \ l/s$			shutdown		
$PAU \le 1000 \text{ l/s},$	Shutdown	Shutdown	No need to	Shutdown	
EAF > 1000 l/s			shutdown		
PAU > 1000 l/s,	Shutdown	Shutdown	No need to	Shutdown	
$EAF \leq 1000 \ l/s$			shutdown		
PAU > 1000 l/s,	Shutdown	Shutdown	No need to	Shutdown	
EAF > 1000 l/s			shutdown		

Case 5/1

Features / Highlights :

- 1. PAU is serving single compartment.
- 2. Space smoke detector installed at corridor activates the tripping function by Method "D".
- 3. Rooms and corridor are considered as single compartment.
- 4. EAF if provided at corridor, shutdown principles follow the case 4/1.

	Operational Response to VAC Control				
Scenario	PAU $FCU \le 1000 \text{ l/s}$ $FCU > 1000 \text{ l/s}$				
$PAU \leq 1000 \ l/s$	No need to shutdown No need to shutdown Shutdown				
PAU > 1000 l/s	Shutdown	No need to shutdown	Shutdown		

Case 5/2

- 1. PAU is serving multi-compartments.
- 2. Space smoke detector installed at corridor activates the tripping function by Method "D".
- 3. Rooms and corridor are considered as individual fire compartments.
- 4. EAF if provided at corridor, shutdown principles follow the case 4/3.

	Operational Response to VAC Control				
Scenario	PAU $FCU \le 1000 \text{ l/s}$ $FCU > 1000 \text{ l/s}$				
$PAU \le 1000 \ l/s$	Shutdown No need to shutdown Shutdown				
PAU > 1000 l/s	Shutdown	No need to shutdown	Shutdown		

Case 6/1

- 1. PAU is serving multi-compartments.
- 2. AHU of each floor may serve single or multi-compartments depending on individual situation.
- 3. PAU can only be operated when any one of the AHU is running.
- 4. Probe type smoke detector installed at any AHU will activate the tripping function of PAU and AHU of respective floor.

	Operational Response to VAC Control				
Scenario	PAU	AHU (single compartment)	AHU (multi-compartments)		
$PAU \le 1000 \ l/s,$	Shutdown	No need to shutdown	Shutdown		
$AHU \leq 1000 \ l/s$					
$PAU \le 1000 \ l/s,$	Shutdown	Shutdown	Shutdown		
AHU > 1000 l/s					
PAU > 1000 l/s,	Shutdown	No need to shutdown	Shutdown		
$AHU \le 1000 \ l/s$					
PAU > 1000 l/s,	Shutdown	Shutdown	Shutdown		
AHU > 1000 l/s					

Case 6/2

Features / Highlights :

- 1. PAU is serving multi-compartments.
- 2. AHU of each floor may serve single or multi-compartments depending on individual situation.
- 3. PAU can only be operated when any one of the AHU is running.
- 4. Probe type smoke detector installed at any AHU and space detector installed at corridor will activate the tripping function of PAU, AHU / FCU of respective floor.

	Operational Response to VAC Control				
Scenario	PAU	AHU (single	AHU (multi-	FCU	FCU
		compartment)	compartments)	$\leq 1000 \text{ l/s}$	> 1000 l/s
$PAU \le 1000 \ l/s$,	Shutdown	No need to	Shutdown	No need to	Shutdown
$AHU \leq 1000 \ l/s$		shutdown		shutdown	
$PAU \le 1000 \ l/s$,	Shutdown	Shutdown	Shutdown	No need to	Shutdown
AHU > 1000 l/s				shutdown	
PAU > 1000 l/s,	Shutdown	No need to	Shutdown	No need to	Shutdown
$AHU \leq 1000 \ l/s$		shutdown		shutdown	
PAU > 1000 l/s,	Shutdown	Shutdown	Shutdown	No need to	Shutdown
AHU > 1000 l/s				shutdown	

Case 7/1

- 1. PAU and AHU are serving multi-compartments.
- 2. PAU can only be operated when any one of the AHU is running.
- 3. Probe type smoke detector installed at any AHU will activate the tripping function of PAU, AHU and close the Fire & Smoke Damper of respective floor.

	Operational Response to VAC Control			
Scenario	PAU $AHU \le 1000 \ l/s$ $AHU > 1000 \ l/s$			
$PAU \le 1000 \ l/s$	Shutdown Shutdown Shutdown			
PAU > 1000 l/s	Shutdown	Shutdown	Shutdown	

Case 7/2

- 1. PAU and AHU are serving multi-compartments.
- 2. PAU can only be operated when any one of the AHU is running.
- 3. Probe type smoke detector installed at AHU and space smoke detector installed at corridor will activate the tripping function of PAU, AHU and FCU and close the Fire & Smoke Damper of AHU of respective floor.

	Operational Response to VAC Control				
Scenario	PAU	AHU	$FCU \le 1000 \ l/s$	FCU > 1000 l/s	
$PAU \leq 1000 \text{ l/s},$	Shutdown	Shutdown	No need to	Shutdown	
$AHU \leq 1000 \ l/s$			shutdown		
$PAU \le 1000 \text{ l/s},$	Shutdown	Shutdown	No need to	Shutdown	
AHU > 1000 l/s			shutdown		
PAU > 1000 l/s,	Shutdown	Shutdown	No need to	Shutdown	
$AHU \leq 1000 \ l/s$			shutdown		
PAU > 1000 l/s,	Shutdown	Shutdown	No need to	Shutdown	
AHU > 1000 l/s			shutdown		

Case 8/1

Features / Highlights :

- 1. Fans are serving separate compartment.
- 2. Ventilation is by low level intake and high level exhaust.

	Operational Response to VAC Control			
Scenario	EAF	EF		
Fan of All	No need to	No need to		
Capacity	shutdown	shutdown		

Case 8/2

Features / Highlights :

- 1. Fans are serving multi-compartments.
- 2. Ventilation is by low level intake and high level exhaust.

	Operational Response to VAC Control			
Scenario	EAF	EF		
Fan of All	Shutdown	Shutdown		
Capacity				

Case 8/3

- 1. EAF is serving single compartment while EF is serving multi-compartments.
- 2. Ventilation is by low level intake and high level exhaust.

	Operational Response to VAC Control			
Scenario	EAF	EF		
Fan of All	No need to	Shutdown		
Capacity	shutdown			

Case 9/1, 9/2, 10/1

Features / Highlights :

1. EAF is serving multi-compartments.

	Operational Response to VAC Control			
Scenario	EAF			
Fan of All	Shutdown			
Capacity				

Case 10/2

Features / Highlights :

1. EAF and booster fans are serving multi-compartments.

	Operational Response to VAC Control			
Scenario	EAF	Booster Fan of		
		Incident Floor		
Fan of All	Shutdown	Shutdown		
Capacity				

Case 11/1

- 1. EAF1 is a dedicated system serving a single shop.
- 2. EAF2 is central system serving multi-shops.
- 3. EAF3 is central system serving multi-shops and ductwork exits from shop front associated with fire damper.
- 4. EAF4 is central system serving multi-shops and ductwork exits from shop front associated with fire and smoke damper.
- 5. Fire and smoke dampers at shop 8 to 11 will respond and close up according to smoke detector signal inside individual shop.
- 6. If the partition at shop front do NOT have fire rating requirement, the fire damper for shops 2 to 5 can be waived and the fire & smoke damper at shop 8 to 11 can be replaced by smoke damper.

	Operational Response to VAC Control						
Scenario	EAF1	EAF1 EAF2 EAF3 EAF4					
Fan > 1000 l/s	Shutdown	Shutdown	Shutdown	No need to			
				shutdown			
$Fan \leq 1000 \ l/s$	No need to	Shutdown	Shutdown	No need to			
	shutdown			shutdown			

Case 11/2

- 1. FAF1 is a dedicated system serving a single shop.
- 2. FAF2 is central system serving multi-shops.
- 3. FAF3 is central system serving multi-shops and ductwork enters from shop front associated with fire damper.
- 4. FAF4 is central system serving multi-shops and ductwork enters from shop front associated with fire and smoke damper.
- 5. Fire and smoke dampers at shop 8 to 11 will respond and close up according to smoke detector signal inside individual shop.
- 6. If the partition at shop front do NOT have fire rating requirement, the fire damper for shops 2 to 5 can be waived and the fire & smoke damper at shop 8 to 11 can be replaced by smoke damper.

	Operational Response to VAC Control						
Scenario	FAF1	FAF1 FAF2 FAF3 FAF4					
Fan > 1000 l/s	Shutdown	Shutdown	Shutdown	No need to			
				shutdown			
$Fan \le 1000 \text{ l/s}$	No need to	Shutdown	Shutdown	No need to			
	shutdown			shutdown			

Case 12/1

Features / Highlights :

1. Kitchen ventilation is independent from that of non-kitchen areas.

	Operational Response to VAC Control						
Scenario	FAF1	FAF1 EAF1 FAF2 EAF2					
Fan > 1000 l/s	No need to	No need to	Shutdown	Shutdown			
	shutdown	shutdown					
$Fan \le 1000 \text{ l/s}$	No need to	No need to	No need to	No need to			
	shutdown	shutdown	shutdown	shutdown			

Case 12/2

- 1. Kitchen ventilation is share used with other non-kitchen areas. At the kitchen compartment wall, fire & smoke dampers have been provided.
- 2. Smoke detectors or method D are generally used. For fire detection inside kitchen area, automatic detection device other than smoke sensing (e.g. heat detector, flow switch at sprinkler system, etc.) can be acceptable.
- 3. Fire and smoke dampers will close up upon any smoke or fire detector signal.

	Operational Response to VAC Control		
Scenario	FAF	EAF	
Fan > 1000 l/s	No need to	No need to	
	shutdown	shutdown	
$Fan \le 1000 \ l/s$	No need to	No need to	
	shutdown	shutdown	

Case 12/3

Features / Highlights :

- 1. Kitchen ventilation is share used with other non-kitchen areas. At the kitchen compartment wall, only fire dampers have been provided.
- 2. Smoke detectors or method D are generally used. For fire detection inside kitchen area, automatic detection device other than smoke sensing (e.g. heat detector, flow switch at sprinkler system, etc.) can be acceptable.

	Operational Response to VAC Control			
Scenario	FAF	EAF		
Fan > 1000 l/s	Shutdown	Shutdown		
Fan ≤ 1000 l/s	Shutdown	Shutdown		

Case 12/4

- 1. Kitchen ventilation is share used with other non-kitchen areas but the fans are installed at non-kitchen side. At the kitchen compartment wall, fire & smoke dampers have been provided.
- 2. Smoke detectors or method D are generally used. For fire detection inside kitchen area, automatic detection device other than smoke sensing (e.g. heat detector, flow switch at sprinkler system, etc.) can be acceptable.
- 3. Fire and smoke dampers will close up when fire or smoke alarm signal actuated inside kitchen.

	Operational Response to VAC Control			
Scenario	FAF	EAF	Fire & Smoke Damper	
Fire broke out	No need to	No need to	Close up	
inside kitchen	shutdown	shutdown		
Fire broke out	Shutdown	Shutdown	Open or close up	
outside kitchen				

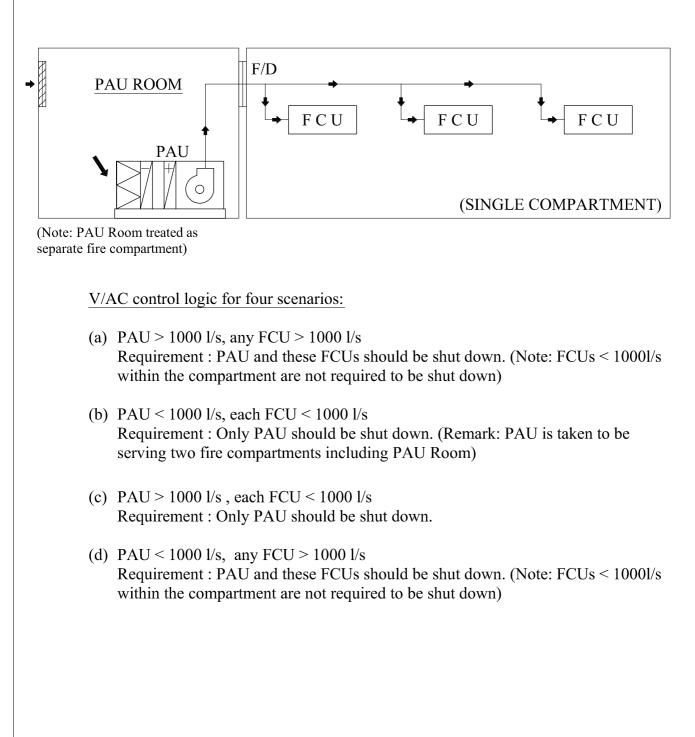
Case 12/5

- 1. Kitchen ventilation is share used with other non-kitchen areas.
- 2. Booster fans have been installed and Fire & Smoke Dampers have been provided at interconnection to building central systems.
- 3. Smoke detectors or method D are generally used. For fire detection inside kitchen area, automatic detection device other than smoke sensing (e.g. heat detector, flow switch at sprinkler system, etc.) can be acceptable.

		Operational Response to VAC Control					
Scenario	FAF	FAF EAF Fire & Smoke Damper					
Booster Fan > 1000 l/s	Shutdown	Shutdown	Close up				
Booster Fan ≤ 1000 l/s	Shutdown	Shutdown	Close up				

LEGEND & NOTE

- PROBE TYPE SMOKE DETECTOR
- SMOKE DETECTOR (250 sq.m/UNIT COVERAGE) FOR TRIPPING OF VENT A/C CONTROL SYSTEM ONLY
- AHU AIR HANDLING UNIT
- EAD EXHAUST AIR DUCT
- EAF EXHAUST AIR FAN
- EF PROPELLER TYPE EXHAUST FAN OR SIMILAR
- E&M ELECTRICAL & MECHANICAL
- FA FRESH AIR
- FAF FRESH AIR FAN
- FCU FAN COIL UNIT
- F/D FIRE DAMPER
- F&S/D FIRE & SMOKE DAMPER
- PAU PRIMARY AIR HANDLING UNIT
- RAD RETURN AIR DUCT
- TAG TRANSFER AIR GRILLE
- V/AC VENTILATION/AIR CONDITIONING

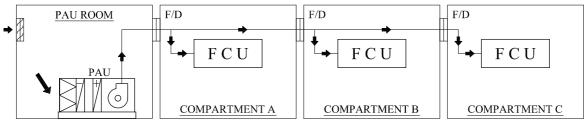

<u>Notes:</u>

- (1) Any one of the following methods can be used to activate a VAC control system:
 - i) Method "A" If the compartment/unit is provided with a smoke detector automatic fire alarm system, on activation of that system all fans serving the compartment shall be shut down.
 - ii) Method "B" Smoke detectors of a type suitable for use in air ducts (duct type smoke detector), shall be installed in the exhaust and/or recirculation ductwork serving the compartment/unit, which on sensing smoke, will automatically shut down all fans in the mechanical ventilating system serving the compartment/unit.
 - iii) Method "C" Shut down all the fans in the building instead of isolated compartments/units by the actuation of building fire alarm system.
 - iv) Method "D" (Modified shut down method) Shut down all the fans in the affected compartment by the actuation of smoke detector(s) installed in suitable position under false ceiling at space of 250m² of net floor area for each detector.(Please refer to Part IV Clause 1.10 of FSD Circular Letter 4/96.)
 - v) A combination of any methods mentioned above except Method "C".
- (2) For "Licensed Premises" (See Drawings No. FS-VEN-126 to 132):
 - i) If the mechanical ventilating system of a "Licensed Premises" is connected to the central exhaust/supply systems of the building, it may be accepted as an independent system provided that a fire and smoke damper (F&SD) or a smoke damper (SD) as appropriate is installed at the interconnection to the central exhaust/supply system(s). In the event of a fire inside the "Licensed Premises", the central exhaust/supply fan(s) are not required to be shut down but the F&SD/SD shall be closed by a fire signal from the "Licensed Premises". Under such circumstance, the provision of a seperate manual override switch at a location agreeable to the Director of Fire Services may be accepted as an alternative to the manual override switch installed at the central fire control panel for the "Licensed Premises".
 - ii) If the "Licensed Premises" have their own mechanical ventilating system, the provision of a manual override switch at a location agreeable to the Director of Fire Services may be accepted as an alternative to the one installed at the central fire control panel of the building, provided that there are specific reasons for such provision or difficulties to install a manual override switch at the central fire control panel as accepted by the Director of Fire Services.
- (3) Please refer to the Code of Practice for Minimum Fire Service Installations and Equipment for mechanical ventilating systems that can be exempted from the provisioning of automatic override control function at the V/AC control system.

Title	:	LEGEND	&	NOTE
-------	---	--------	---	------

	,	: C. H. WONG	Drawing No.	: FS-VEN-101	S.	FIRE	SERVICES	DEPARTMENT
	Checked by	: K. C. HEUNG	Scale	: NIL		洕	防處	
XREF_			Issue Date	: AUG. 2005	J. Avies			
×			Revision Date	•	HONG KONG			

CASE 1/1 - PAU IN OPEN VENTILATED ROOM SERVING SINGLE COMPARTMENT

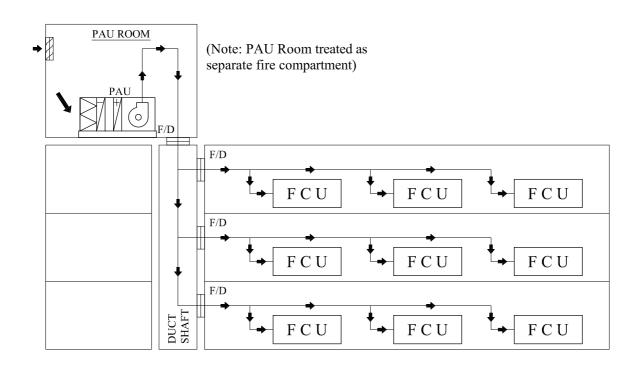


Please refer to "Notes" on drawing no. FS-VEN-101 for acceptable methods to activate the V/AC control system.

Title : CASE 1/1 - PAU IN O SERVING SINGLE COMPA		00M			
Drawn by : C. H. WONG	Drawing No. : FS-VE	v-102	FIRE	SERVICES	DEPARTMENT
Checked by : K. C. HEUNG	Scale : NIL	erre 3			
	Issue Date : AUG. 2	.005	114	<i></i>	
	Revision Date :	HOIC KONG			

(REF FILE

CASE 1/2 - PAU IN OPEN VENTILATED ROOM SERVING MULTI-COMPARTMENT SINGLE FLOOR

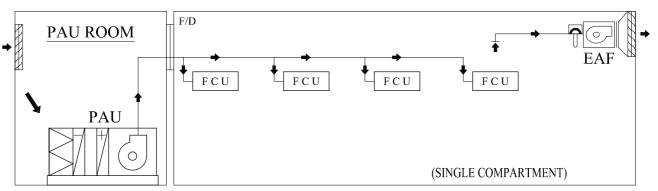

(Note: PAU Room treated as separate fire compartment)

V/AC control logic for four scenarios:

- (a) PAU > 1000 l/s, any FCU > 1000 l/s
 Requirement : PAU and these FCUs should be shut down. (Note: FCUs < 1000l/s within the compartment are not required to be shut down)
- (b) PAU< 1000 l/s, each FCU < 1000 l/s Requirement : Only PAU should be shut down.
- (c) PAU > 1000 l/s, each FCU < 1000 l/s
 Requirement : Only PAU should be shut down.
- (d) PAU < 1000 l/s, any FCU > 1000 l/s Requirement : PAU and these FCUs should be shut down. (Note: FCUs < 1000l/s within the compartment are not required to be shut down)

	Title : CASE 1/2 - PAU IN OF SERVING MULTI-COMPAR						
	Drawn by : C. H. WONG	Drawing No.	: FS-VEN-103	Ś	FIRE	SERVICES	DEPARTMENT
FILE	Checked by : K. C. HEUNG	Scale	: NIL	ERE	洕		
XREF_		Issue Date	: AUG. 2005	SFRUICES	114		
XR		Revision Date	:	HONG KONG			

CASE 1/3 - PAU IN OPEN VENTILATED ROOM SERVING MULTI-COMPARTMENT MULTI-FLOOR



V/AC control logic for four scenarios:

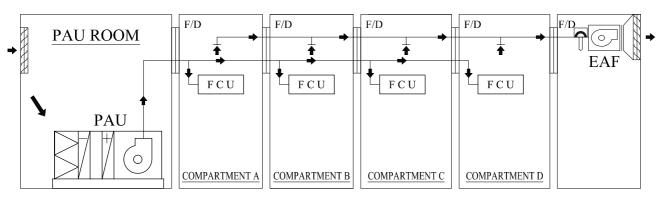
- (a) PAU > 1000 l/s, any FCU > 1000 l/s
 Requirement : PAU and these FCUs should be shut down. (Note: FCUs < 1000l/s within the compartment not required to be shut down)
- (b) PAU< 1000 l/s, each FCU < 1000 l/s Requirement : Only PAU should be shut down.
- (c) PAU > 1000 l/s, each FCU < 1000 l/s
 Requirement : Only PAU should be shut down.
- (d) PAU < 1000 l/s, any FCU > 1000 l/s
 Requirement : PAU and these FCUs should be shut down. (Note: FCUs < 1000l/s within the compartment are not required to be shut down)

	Title : CASE 1/3 - PAU IN OF SERVING MULTI-COMPAR		
	Drawn by : C. H. WONG	Drawing No. : FS-VEN-104	FIRE SERVICES DEPARTMENT
FILE	Checked by : K. C. HEUNG	Scale : NIL	消防處
XREF_		Issue Date : AUG. 2005	
X		Revision Date :	- HOICTORD

CASE 2/1 - PAU IN OPEN VENTILATED ROOM SERVING SINGLE COMPARTMENT WITH DUCTED EXHAUST

(Note: PAU Room treated as separate fire compartment)

V/AC control logic for five scenarios:

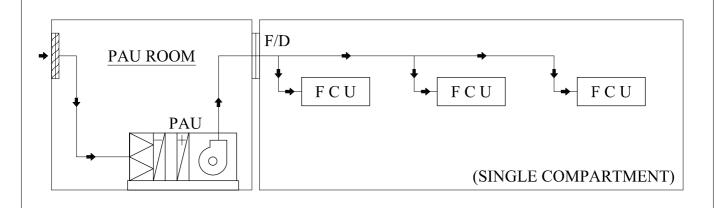

(a)	Requirement : PAU, I (Tripping can be mad electrically interlocking when the exhaust air f	> 1000 l/s, any FCU > 1000 l/s EAF and these FCUs should be shut down e by the probe type smoke detector install ng the exhaust air fan and PAU, such that fan is in operation.) /s within the compartment are not required	ed in exhaust air fan and t the PAU can be operated only
(b)	Requirement : Only P (Tripping method in i	< 1000 l/s, each FCU < 1000 l/s AU should be shut down. tem (a) can be followed but application is detector can detect smoke within the fire	
(c)	Requirement : Only P (Tripping method in i	 F < 1000 l/s, each FCU < 1000 l/s PAU should be shut down. tem (a) can be followed but application is detector can detect smoke within the fire 	only limited to location where compartments at early stage.)
(d)	Requirement : PAU, I (Tripping method in i	> 1000 l/s, any FCU > 1000 l/s EAF and these FCUs should be shut down tem (a) can be followed.) /s within the compartment are not required	
(e) When met for other a	(Tripping method in i the probe type smoke (Note: FCUs < 1000)/ hod in item (a) is no	hould be shut down. Only those EAF and tem (a) can be followed but application is detector can detect smoke within the fire s within the compartment are not required of applicable, please refer to "Notes to activate the V/AC control system	only limited to location where compartments at early stage.) l to be shut down) s" on drawing no. FS-VEN-101
Title : CASE 2 SINGLE	2/1 — PAU IN OF COMPARTMENT W	PEN VENTILATED ROOM SERVING ITH DUCTED EXHAUST	
	. H. WONG	Drawing No. : FS-VEN-105	FIRE SERVICES DEPARTMENT
Checked by : K	. C. HEUNG	Scale : NIL	消防處

: AUG. 2005

:

Issue Date Revision Date

CASE 2/2 - PAU IN OPEN VENTILATED ROOM SERVING MULTI-COMPARTMENT WITH DUCTED EXHAUST

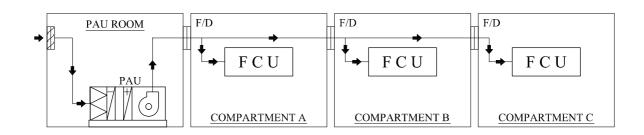

(Note: PAU Room treated as separate fire compartment)

XREF_FILE

V/AC control logic for four scenarios:

	U						
(a)	(Tripping can be mad electrically interlocki when the exhaust air	EAF and these le by the probe ing the exhaus fan is in opera	e FCUs should be shut dow e type smoke detector insta t air fan and PAU, such th	lled in exh at the PAU	can b	e operate	
(b)	PAU < 1000 l/s, EAF Requirement : Only F (Tripping method in)	PAU and EAF	should be shut down.				
(c)	PAU > 1000 l/s, EA Requirement : Only I (Tripping method in)	PAU and EAF	should be shut down.				
(d)	(Tripping method in	EAF and these item (a) can be	e FCUs should be shut dow		ut dow	n)	
for other a	acceptable methods	to activate t	e, please refer to "Not he V/AC control syste	es" on dra m.	awing	g no. FS	-VEN-101
	/2 – PAU IN OPI -COMPARTMENT WI		TED ROOM SERVING EXHAUST				
2	C. H. WONG K. C. HEUNG	Drawing No. Scale Issue Date Revision Date	: FS-VEN-106 : NIL : AUG. 2005 :	ERE RUNCE MORE KORE	FIRE 洕	SERVICE 防 庱	S DEPARTMENT हे

CASE 3/1 - PAU WITH DUCTED FRESH AIR SUPPLY SERVING SINGLE COMPARTMENT



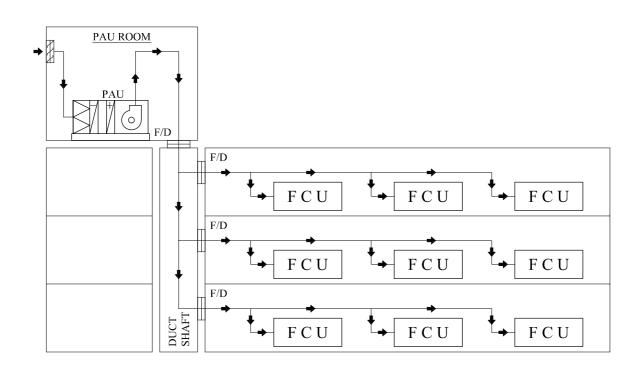
V/AC control logic for four scenarios:

- (a) PAU > 1000 l/s, any FCU > 1000 l/s
 Requirement : PAU and these FCUs should be shut down.
 (Note: FCUs < 1000l/s within the compartment are not required to be shut down)
- (b) PAU < 1000 l/s, each FCU < 1000 l/s Requirement : Tripping is not required.
- (c) PAU > 1000 l/s, each FCU < 1000 l/s Requirement : Only PAU should be shut down.
- (d) PAU < 1000 l/s, any FCU > 1000 l/s Requirement : Only these FCUs should be shut down. (Note: FCUs < 1000l/s within the compartment are not required to be shut down)

		E 3/1 – PAU WITH VING SINGLE COMPAR		ESH AIR SUPPLY				
	Drawn by	: C. H. WONG	Drawing No.	: FS-VEN-107	-	FIRF	SERVICES	DEPARTMENT
	Checked by	: K. C. HEUNG	Scale	: NIL	ERES		防處	
			Issue Date	: AUG. 2005	SF RVICE	114		
2 <			Revision Date	:	HONG KONG			

CASE 3/2 - PAU WITH DUCTED FRESH AIR SUPPLY SERVING MULTI-COMPARTMENT SINGLE FLOOR

V/AC control logic for four scenarios:

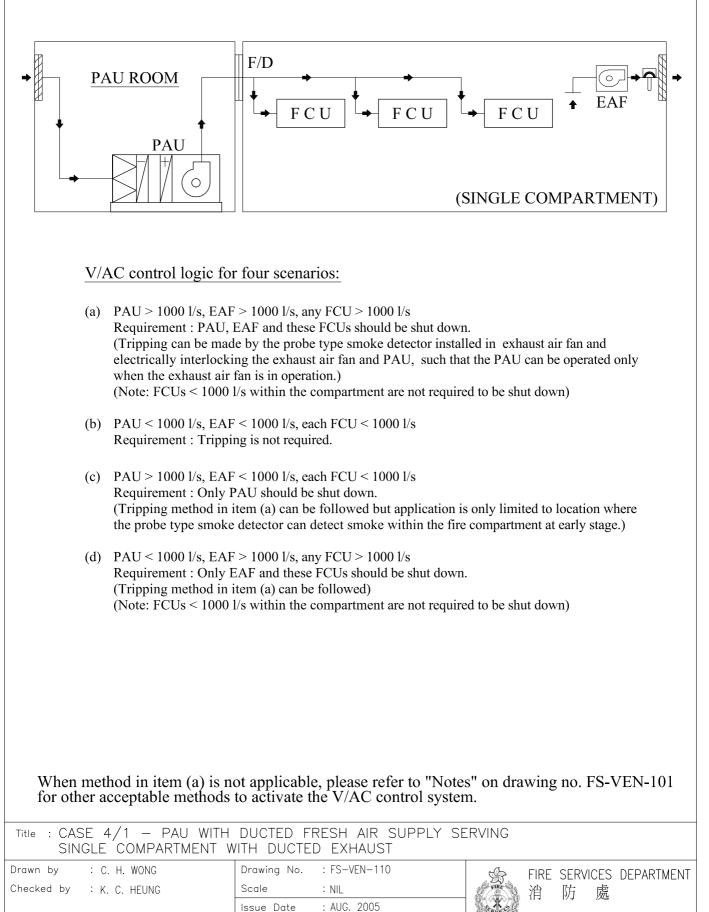

(a)	PAU > 1000 l/s, any FCU > 1000 l/s
	Requirement : PAU and these FCUs should be shut down.
	(Note: FCUs < 1000 l/s within the compartment are not required
	to be shut down)

- (b) PAU < 1000 l/s, each FCU < 1000 l/s Requirement : Only PAU should be shut down.
- (c) PAU > 1000 l/s, each FCU < 1000 l/s Requirement : Only PAU should be shut down.

(d) PAU < 1000 l/s, any FCU > 1000 l/s Requirement : PAU and these FCUs should be shut down. (Note: FCUs < 1000 l/s within the compartment are not required to be shut down)

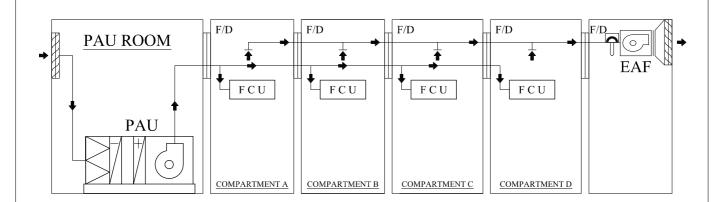
	Title : CASE 3/2 - PAU WITH SERVING MULTI-COMPAR						
	Drawn by : C. H. WONG	Drawing No. :	: FS-VEN-108	Š	FIRE	SERVICES	DEPARTMENT
	Checked by : K. C. HEUNG	Scale :	: NIL	EIRE	洕		
XREF_	:	Issue Date :	: AUG. 2005	SERVICES	114		
×	:	Revision Date :	:	HONG KONC			

CASE 3/3 - PAU WITH DUCTED FRESH AIR SUPPLY SERVING MULTI-COMPARTMENT MULTI-FLOOR

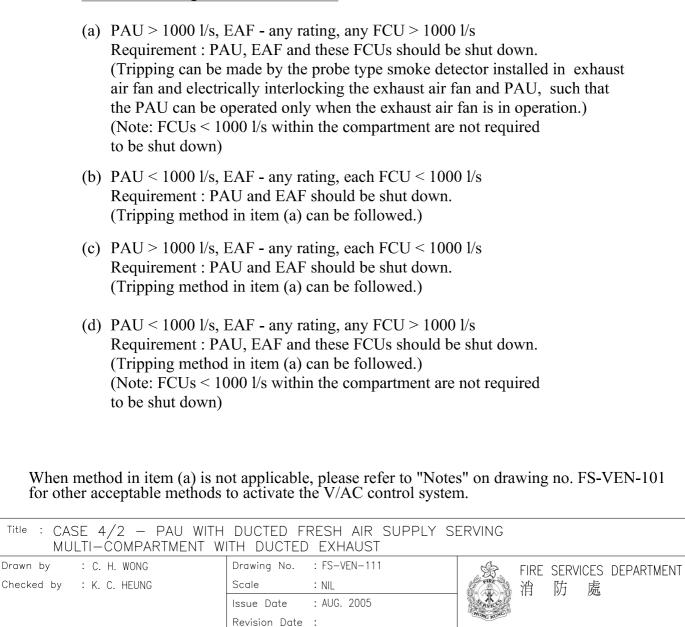


V/AC control logic for four scenarios:

- (a) PAU > 1000 l/s, any FCU > 1000 l/s
 Requirement : PAU and these FCUs should be shut down.
 (Note: FCUs < 1000 l/s within the compartment are not required to be shut down)
- (b) PAU < 1000 l/s, each FCU < 1000 l/s Requirement : Only PAU should be shut down.
- (c) PAU > 1000 l/s, each FCU < 1000 l/s Requirement : Only PAU should be shut down.
- (d) PAU < 1000 l/s, any FCU > 1000 l/s Requirement : PAU and these FCUs should be shut down.
 (Note: FCUs < 1000 l/s within the compartment are not required to be shut down)

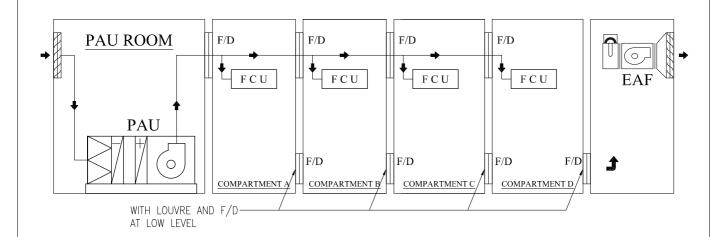

		,	- PAU WITH LTI-COMPAR		RESH AIR SUPPLY TI-FLOOR					
	Drawn by	: C. H. WO	NG	Drawing No.	: FS-VEN-109	Š	FIRE	SERVIC	ES	DEPARTMENT
	Checked by	: K. C. HEU	JNG	Scale	: NIL	EIRE			處	
XREF_				Issue Date	: AUG. 2005	J. K.S	114			
×				Revision Date	:	HONG KONC				

CASE 4/1 - PAU WITH DUCTED FRESH AIR SUPPLY SERVING SINGLE COMPARTMENT WITH DUCTED EXHAUST



Revision Date

CASE 4/2 - PAU WITH DUCTED FRESH AIR SUPPLY SERVING MULTI-COMPARTMENT WITH DUCTED EXHAUST

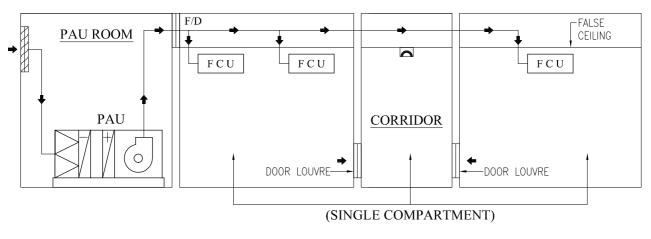


V/AC control logic for four scenarios:

XREF_FILE

CASE 4/3 - PAU WITH DUCTED FRESH AIR SUPPLY SERVING MULTI-COMPARTMENT WITH OPEN EXHAUST

V/AC control logic for four scenarios:


(a)	PAU > 1000 l/s, I Requirement : PA (Tripping can be air fan and electri the PAU can be o (Note: FCUs < 10 to be shut down)	U, EAF and made by the cally inter perated on	nd these FCU the probe type locking the e ly when the	Js should be e smoke dete exhaust air fa exhaust air :	e shut dov ector insta an and PA fan is in c	alled AU, s opera	such tha	
(b)	PAU < 1000 l/s, I Requirement : PA (Tripping method	U and EA	F should be	shut down.) l/s			
(c)	PAU > 1000 l/s, I Requirement : PA (Tripping method	U and EA	F should be	shut down.) l/s			
	PAU < 1000 l/s, I Requirement : PA (Tripping method (Note: FCUs < 10 to be shut down)	U, EAF an in item (a 000 l/s with	nd these FCU) can be foll nin the comp	Js should be owed.) artment are	e shut dov not requi	red	no FS-J	VFN-101
for other ac	od in item (a) is no ceptable methods	to activate	the V/AC co	ontrol systen	s'' on drav n.	wing	no. FS-	VEN-101
	-/3 – PAU WITH COMPARTMENT W			SUPPLY SE	ERVING			
Drawn by : C. Checked by : K.		Drawing No. Scale	: FS-VEN-11 : NIL	2	ERE A		SERVICES 防 處	DEPARTMENT

: AUG. 2005

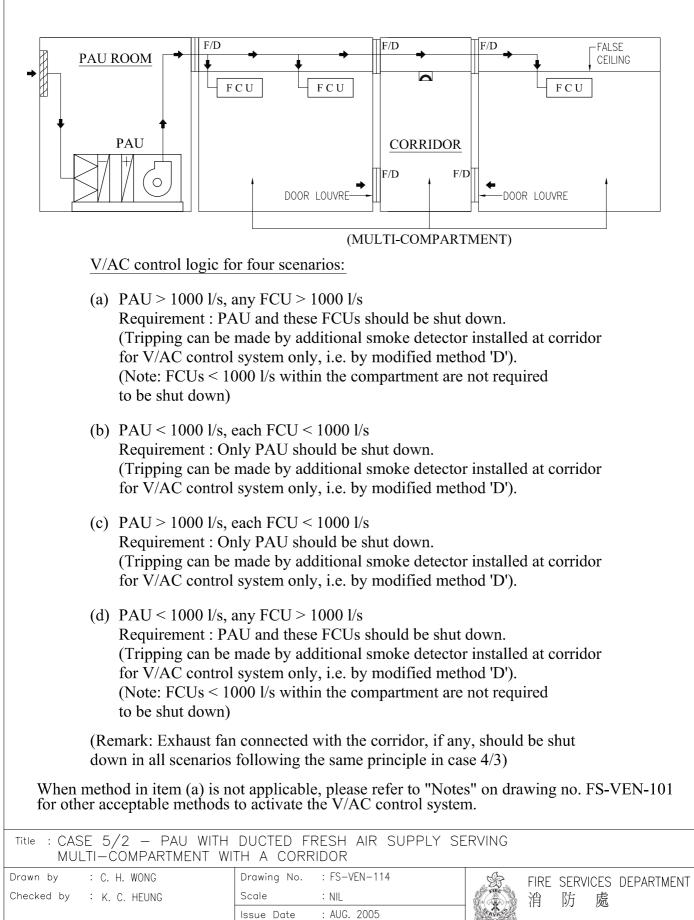
Issue Date : Revision Date :

XREF_FILE

CASE 5/1 - PAU WITH DUCTED FRESH AIR SUPPLY SERVING SINGLE COMPARTMENT WITH A CORRIDOR

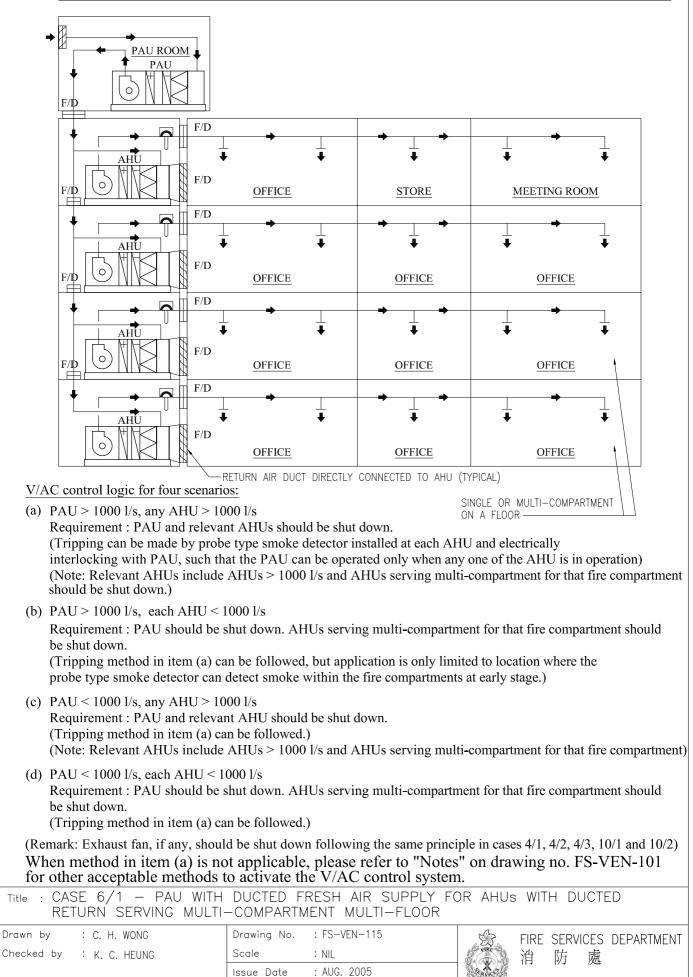
V/AC control logic for four scenarios:

- (a) PAU > 1000 l/s, any FCU > 1000 l/sRequirement : PAU and these FCUs should be shut down. (Tripping can be made by additional smoke detector installed at corridor for V/AC control system only, i.e. by modified method 'D'.) (Note: FCUs < 1000 l/s within the compartment are not required to be shut down)
- (b) PAU < 1000 l/s, each FCU < 1000 l/sRequirement : Tripping is not required.

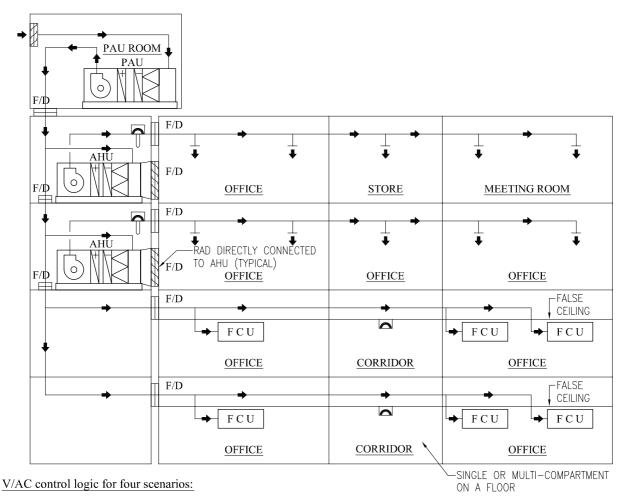

- (c) PAU > 1000 l/s, each FCU < 1000 l/sRequirement : Only PAU should be shut down. (Tripping can be made by additional smoke detector installed at corridor for V/AC control system only, i.e. by modified method 'D'.)
- (d) PAU < 1000 l/s, any FCU > 1000 l/sRequirement : Only these FCUs should be shut down. (Tripping can be made by additional smoke detector installed at corridor for V/AC control system only, i.e. by modified method 'D'.) (Note: FCUs < 1000 l/s within the compartment are not required to be shut down)

(Remark: Exhaust fan > 1000 l/s connected with the corridor, if any, should be shut down following the same principle in case 4/1)

When method in item (a) is not applicable, please refer to "Notes" on drawing no. FS-VEN-101 for other acceptable methods to activate the V/AC control system.


	Title : CASE 5/1 - PAU WITH SINGLE COMPARTMENT V			ERVING			
	Drawn by : C. H. WONG	Drawing No.	: FS-VEN-113	Ś	FIRF	SERVICES	DEPARTMENT
E	Checked by : K. C. HEUNG	Scale	: NIL	EIRE	消		
XREF_		Issue Date	: AUG. 2005	St RVICES	11-3		
×		Revision Date	:	HONG KOHO			

CASE 5/2 - PAU WITH DUCTED FRESH AIR SUPPLY SERVING MULTI-COMPARTMENT WITH A CORRIDOR

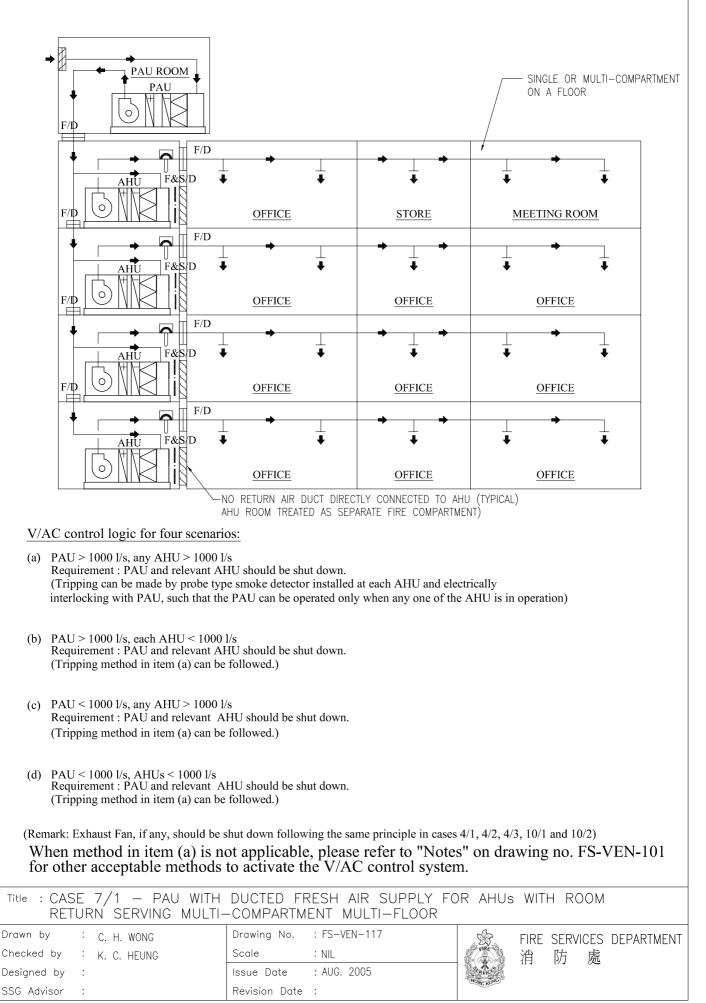

Revision Date

CASE 6/1 - PAU WITH DUCTED FRESH AIR SUPPLY FOR AHUS WITH DUCTED RETURN SERVING MULTI-COMPARTMENT MULTI-FLOOR

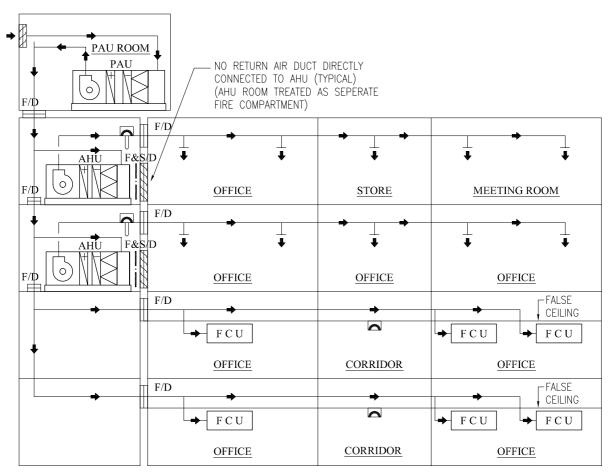
Revision Date

CASE 6/2 - PAU WITH DUCTED FRESH AIR SUPPLY FOR AHUS WITH DUCTED RETURN & FCUS SERVING MULTI-COMPARTMENT MULTI-FLOOR WITH CORRIDOR

- (a) PAU > 1000 l/s, any AHU (and FCU) > 1000 l/s Requirement : PAU and relevant AHUs and FCUs should be shut down.
 (Tripping can be made by smoke detector installed at corridor or probe type smoke detector installed at each AHU and electrically interlocking with PAU, such that the PAU can be operated only when any one of the AHU is in operation) (Note: Relevant AHUs include AHUs > 1000l/s and AHUs serving multi-compartment for that fire compartment. Relevant FCUs include FCUs > 1000 l/s at that fire compartment should be shut down)
- (b) PAU > 1000 l/s, each AHU < 1000 l/s, each FCU < 1000 l/s
 Requirement : PAU should be shut down. AHUs serving multi-compartment for that fire compartment should be shut down.
 (Tripping method in item (a) can be followed, but application is only limited to location where the probe type smoke detector can detect smoke within the fire compartments at early stage.)
- (c) PAU < 1000 l/s, any AHU (and FCU) > 1000 l/s Requirement : PAU and relevant AHUs and FCUs should be shut down. (Tripping method in item (a) can be followed.) (Note: Relevant AHUs include AHUs > 1000 l/s and AHUs serving multi-compartment for that fire compartment. Relevant FCUs include FCUs > 1000 l/s at that fire compartment should be shut down)
- (d) PAU < 1000 l/s, each AHU < 1000 l/s, each FCU < 1000 l/s
 Requirement : PAU should be shut down. AHUs serving multi-compartment for that fire compartment should be shut down.
 (Tripping method in item (a) can be followed.)


(Remark: Exhaust fan, if any, should be shut down following the same principle in cases 4/1, 4/2, 4/3, 5/1, 5/2, 10/1 and 10/2)

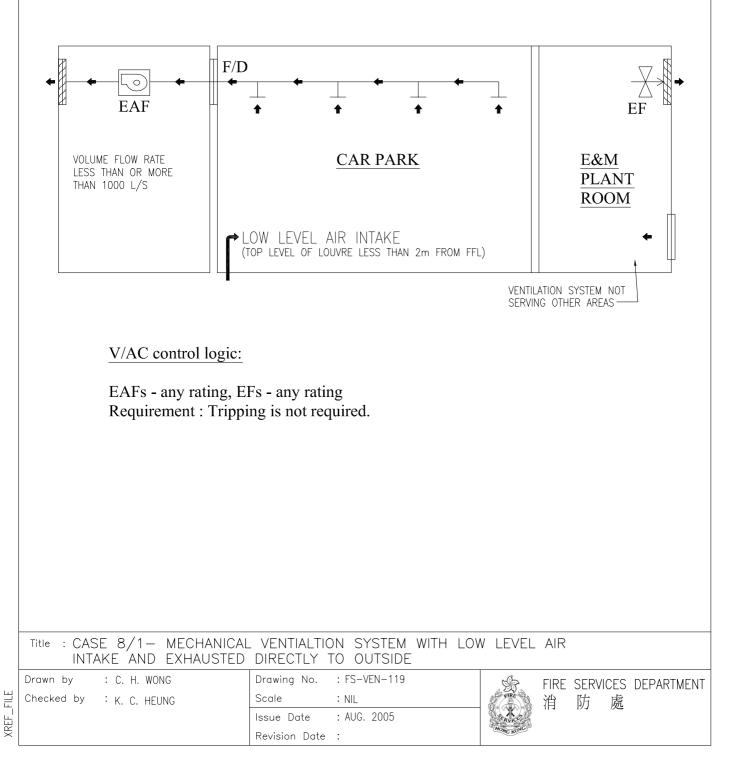
When method in item (a) is not applicable, please refer to "Notes" on drawing no. FS-VEN-101 for other acceptable methods to activate the V/AC control system.


Title : CASE 6/2 - PAU WITH DUCTED FRESH AIR SUPPLY FOR AHUS WITH DUCTED RETURN & FCUS SERVING MULTI-COMPARTMENT MULTI-FLOOR WITH CORRIDOR

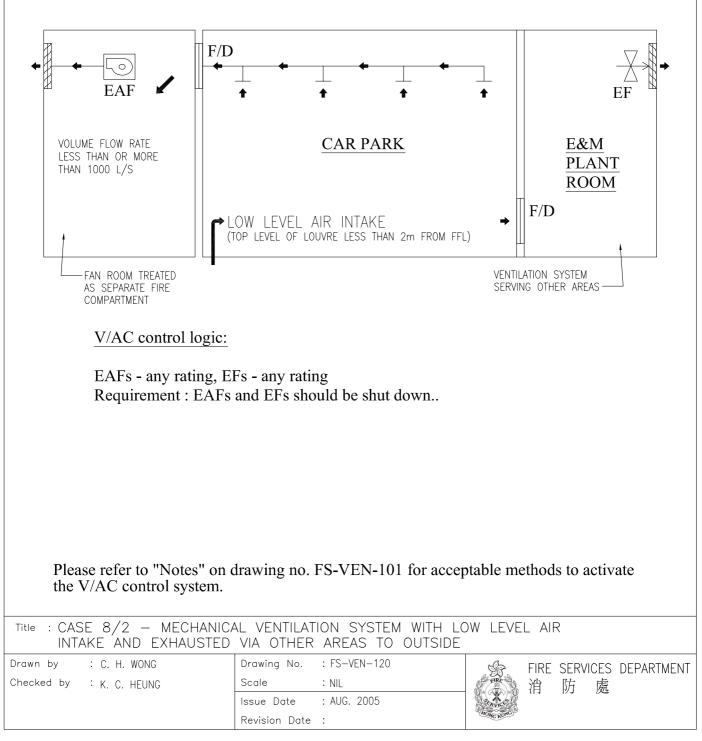
	Drawn by	:	C.	Н.	WONG	Drawing No.	:FS−V	′EN-116	A.	FIRE	SERVI	CES	DEPARTMENT
	Checked by	:	K.	C.	HEUNG	Scale	: NIL		FIRE	洕	防	處	
						Issue Date	: AUG.	2005	St RVICE	114	17.4		
⊻<						Revision Date	:		HONG KONU				

CASE 7/1 - PAU WITH DUCTED FRESH AIR SUPPLY FOR AHUS WITH ROOM RETURN SERVING MULTI-COMPARTMENT MUILTI-FLOOR

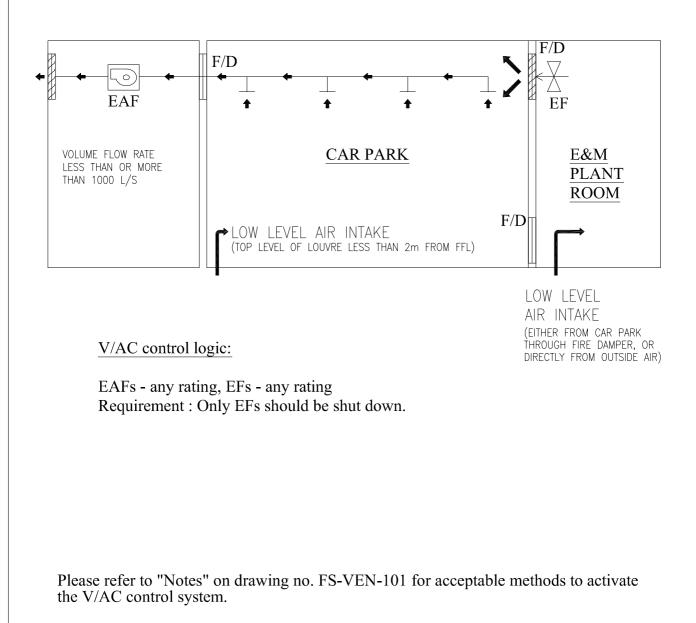
CASE 7/2 - PAU WITH DUCTED FRESH AIR SUPPLY FOR AHUS WITH ROOM RETURN & FCUS SERVING MULTI-COMPARTMENT MULTI-FLOOR WITH CORRIDOR


V/AC control logic for four scenarios:

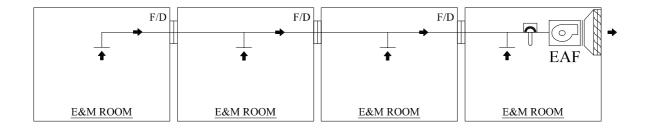
(a)	PAU > 1000 l/s, any AHU (and FC Requirement : PAU & relevant AH (Tripping can be made by probe ty_1 interlocking with PAU, such that th (Note: Relevant AHUs include all <i>A</i> at that fire compartment.)	Us and FCUs s pe smoke detec le PAU can be c	tor installed at corrido operated only when an	ny one of th	ne AHU is in	n opera	tion)	l/s	
(b)	PAU > 1000 l/s, each AHU < 1000 Requirement : PAU & relevant AH (Tripping method in item (a) can be (Note: Relevant AHUs include all A	U should be sh e followed.)	ut down.						
(c)	PAU < 1000 l/s, any AHU (and FC Requirement : PAU & relevant AH (Tripping method in item (a) can be (Note: Relevant AHUs include all A at that fire compartment.)	Us and FCUs s e followed.)		relevant FC	CUs include	FCUs	> 1000 1	l/s	
(d)	PAU < 1000 l/s, each AHU < 1000 Requirement : PAU & relevant AH (Tripping method in item (a) can be (Note: Relevant AHUs include all A	IU should be she followed.)	nut down.						
W	nark: Exhaust Fan, if any, should be hen method in item (a) is not other acceptable methods	ot applicab	le, please refer t	to "Note	s" on dra				,
tle :	CASE 7/2 – PAU WITH RETURN & FCUs SERVIN								OR
awn by ecked	у : C. H. WONG by : K. C. HEUNG	Drawing No. : FS-VEN-118 Scale : NIL Issue Date : AUG. 2005			E AVEC	FIRE 洕	SERVI(防	CES 處	DEPARTMEN
					HONCYONG				


Revision Date

:


CASE 8/1 - MECHANICAL VENTILATION SYSTEM WITH LOW LEVEL AIR INTAKE AND EXHAUSTED DIRECTLY TO OUTSIDE

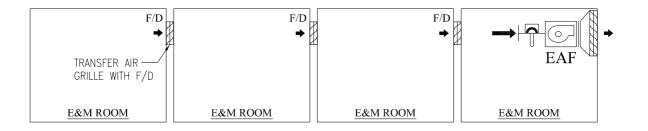
CASE 8/2 - MECHANICAL VENTILATION SYSTEM WITH LOW LEVEL AIR INTAKE AND EXHAUSTED VIA OTHER AREAS TO OUTSIDE



CASE 8/3 - MECHANICAL VENTILATION SYSTEM WITH LOW LEVEL AIR INTAKE AND EXHAUSTED DIRECTLY TO OUTSIDE HAVING VENTILATION FLOW FROM INTERNAL PLANT ROOMS

	Title : CASE 8/3 - MECHANICAL VEN	ITILATION SYST	EM WITH LOW LEVEL AIR	INTAKE A	ND		
	EXHAUSTED DIRECTLY TO OUTS					ROOMS	
	Drawn by : C. H. WONG	Drawing No.	: FS-VEN-121	Ś	FIRE	SERVICES	DEPARTMENT
FILE	Checked by : K. C. HEUNG	Scale	: NIL	FIRE	洕		
XREF_		Issue Date	: AUG. 2005	J. K.S.			
XR		Revision Date	:	HONG KONC			

CASE 9/1 - MECHANICAL VENTILATION SYSTEM WITH EXHAUST AIR DUCT SERVING MULTI-COMPARTMENT

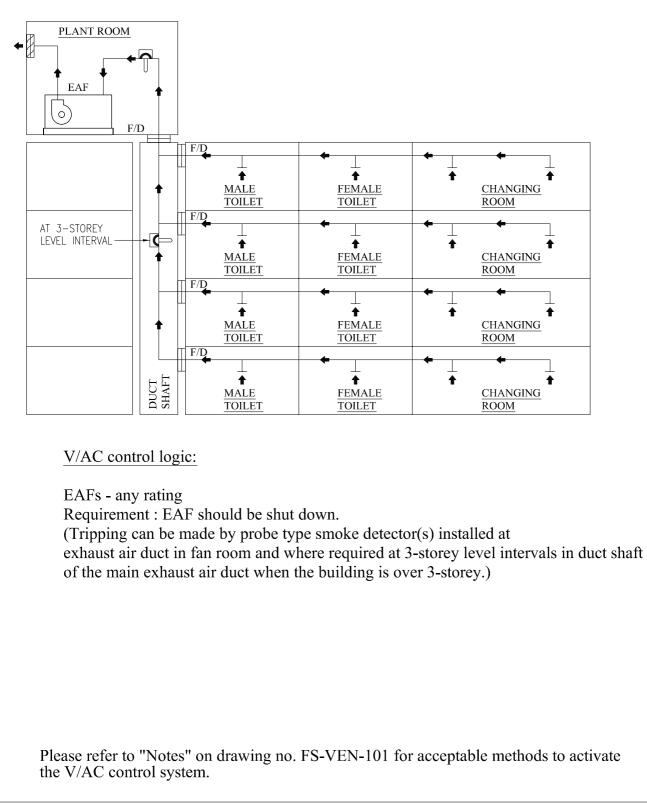


V/AC control logic:

EAFs - any rating Requirement : EAFs should be shut down. (Tripping can be made by probe type smoke detector(s) installed at exhaust air duct)

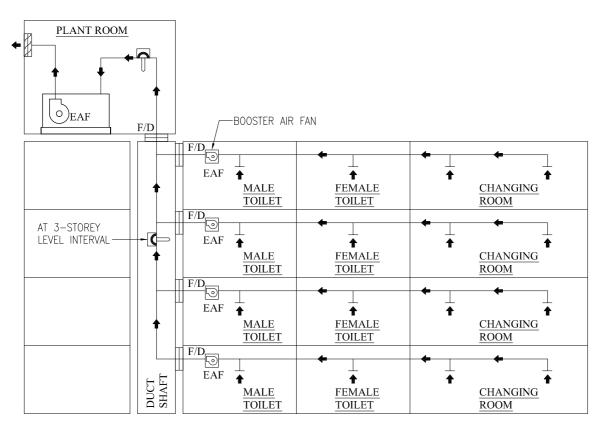
	Title : CASE 9/1 – MECHANIC EXHAUST AIR DUCT SER	AL VENTILATION SYSTEM WITH VING MULTI-COMPARTMENT	
	Drawn by : C. H. WONG	Drawing No. : FS-VEN-122	FIRE SERVICES DEPARTMENT
FILE	Checked by : K. C. HEUNG	Scale : NIL	消防處
XREF_I		Issue Date : AUG. 2005	
XR		Revision Date :	HONG KOIC

CASE 9/2 - MECHANICAL VENTILATION SYSTEM WITHOUT EXHAUST AIR DUCT SERVING MULTI-COMPARTMENT



V/AC control logic:

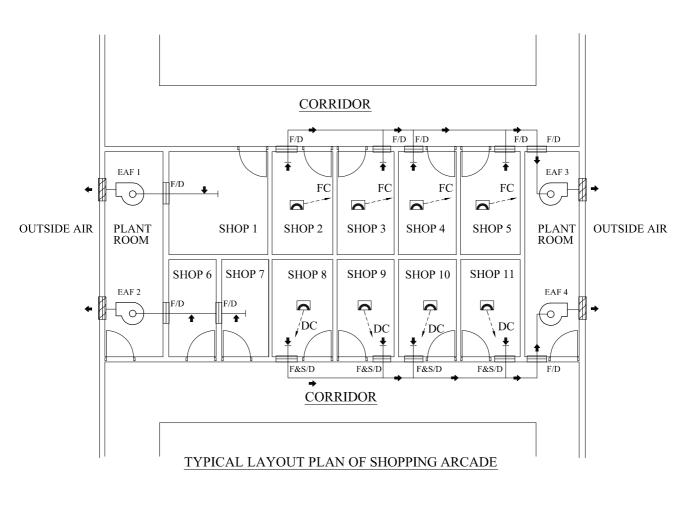
EAFs - any rating Requirement : EAFs should be shut down. (Tripping can be made by probe type smoke detector(s) installed at exhaust air duct)


		SE 9/2 - MECHANIO HAUST AIR DUCT SEI		TION SYSTEM WITHOUT -COMPARTMENT	Γ			
	Drawn by	: C. H. WONG	Drawing No.	: FS-VEN-123	S.	FIRE	SERVICES	DEPARTMENT
FILE	Checked by	: K. C. HEUNG	Scale	: NIL	elRe	消		
XREF_			Issue Date	: AUG. 2005	St RVICES	114		
XR			Revision Date	:	HONG KONC			

CASE 10/1 - MECHANICAL VENTILATION SYSTEM WITH EXHAUST AIR DUCT SERVING MULTI-COMPARTMENT MULTI-FLOOR

	Title : CASE 10/1 - MECHANIC SERVING MULTI-COMPAR			EXHAUST	AIR	DUCT
	Drawn by : C. H. WONG	Drawing No.	: FS-VEN-124	S.	FIRE	SERVICES DEPARTMENT
FILE	Checked by : K. C. HEUNG	Scale	: NIL	FIRE		防處
XREF		Issue Date	: AUG. 2005	S. A.S.	11.4	
XR		Revision Date	:	HONG KONG		

CASE 10/2 - MECHANICAL VENTILATION SYSTEM WITH EXHAUST AIR DUCT AND BOOSTER AIR FANS SERVING MULTI-COMPARTMENT MULTI-FLOOR


V/AC control logic:

EAFs - any rating, Booster Air Fans - any rating Requirement : EAFs and relevant booster air fans should be shut down. (Tripping can be made by probe type smoke detector(s) installed at exhaust air duct in fan room and where required at 3-storey level intervals in duct shaft of the main exhaust air duct when the building is over 3-storey.)

(Note: Relevant booster air fans include booster air fans for that fire compartment should be shut down.)

				.tion system with e 1ulti–compartment				
	Drawn by	: C. H. WONG	Drawing No.	: FS-VEN-125	S.	FIRE	SERVICES	DEPARTMENT
	Checked by	: K. C. HEUNG	Scale	: NIL	FIRE	消	防處	
XREF_			Issue Date	: AUG. 2005	S. X.	11.4	<i></i>	
×			Revision Date	:	HONG KONG			

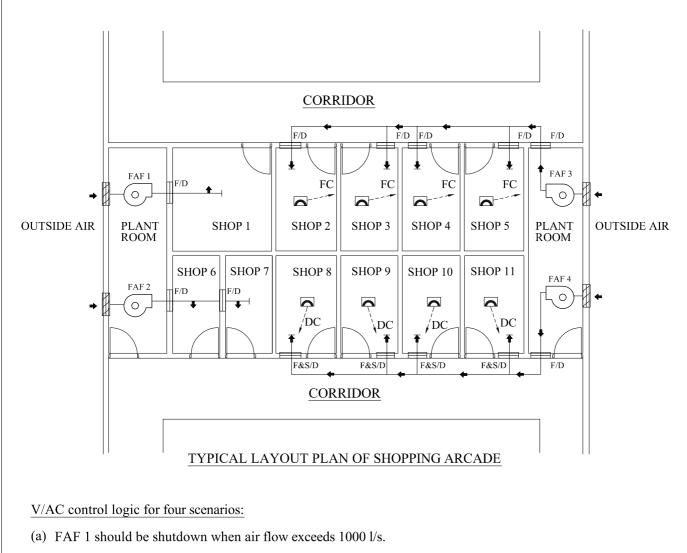
CASE 11/1 - CENTRAL EXHAUST SYSTEM AT SHOPPING ARCADE (FLOOR PLAN)

V/AC control logic for four scenarios:

- (a) EAF 1 should be shutdown when air flow exceeds 1000 l/s.
- (b) EAF 2 should be shutdown.
- (c) EAF 3 should be shutdown, the F/D is not required if the shop front is **not** a fire rated wall/partition.
- (d) EAF 4 is not required to be shutdown, the F&S/D should be activated by space smoke detector(s) installed at each shop; the F&S/D may be replaced by smoke damper if the shop front is <u>not</u> a fire rated wall/partition.

Remarks

FC : Fan control


DC : Damper control

Please refer to "Notes" on drawing no. FS-VEN-101 for other acceptable methods to activate the V/AC control system when the automatic detection device as shown above is not applicable.

Title : CASE 11/1 - CENTRAL EXHAUST SYSTEM AT SHOPPING ARCADE

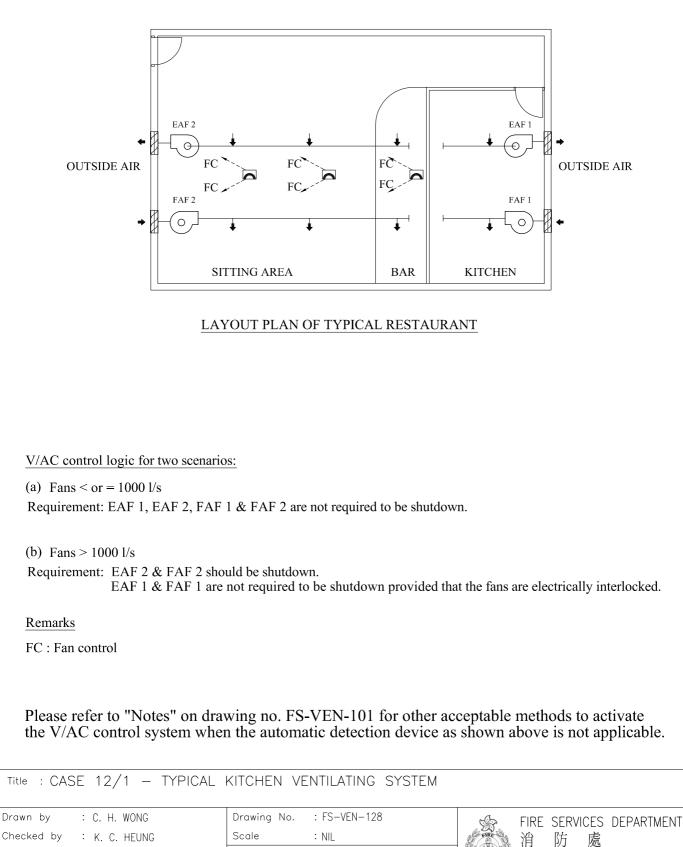
	Drawn by	: C. H.	WONG	Drawing No.	:FS-V	EN-126	Store and	FIRE	SERVICE	IS E	DEPARTMEI	NT
	Checked by	: K. C.	HEUNG	Scale	: NIL		EIRE	洕	防威			
 [Issue Date	: AUG.	2005	St Rucco	114	1/4	_		
Ē				Revision Date	:		HONG KONC					

CASE 11/2 - CENTRAL FRESH AIR SUPPLY SYSTEM AT SHOPPING ARCADE (FLOOR PLAN)

- (b) FAF 2 should be shutdown.
- (c) FAF 3 should be shutdown, the F/D is not required if the shop front is <u>not</u> a fire rated wall/partition.
- (d) FAF 4 is not required to be shutdown, the F&S/D should be activated by space smoke detector(s) installed at each shop; the F&S/D may be replaced by smoke damper if the shop front is <u>not</u> a fire rated wall/partition.

Remarks

FC : Fan control

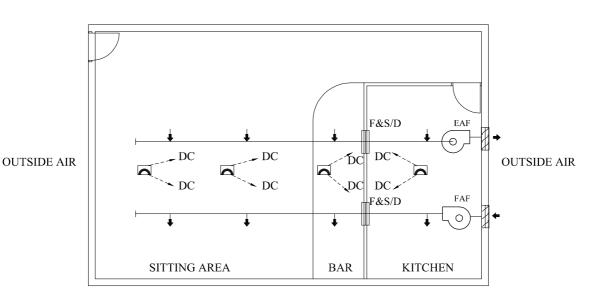

DC : Damper control

Please refer to "Notes" on drawing no. FS-VEN-101 for other acceptable methods to activate the V/AC control system when the automatic detection device as shown above is not applicable.

Title : CASE 11/2 - CENTRAL FRESH AIR SUPPLY SYSTEM AT SHOPPING ARCADE

	Drawn by	:	С. Н.	WONG	Drawing No.	: FS-V	′EN-127	ŝ	FIRE	SERVI	CES	DEPARTMENT
	Checked by	:	K. C.	HEUNG	Scale	: NIL		EX) FIRE	洕		處	
L_ 					Issue Date	: AUG.	2005	St RUCS	11.4	17.4	20	
ΥΥ					Revision Date	:		HONG KONC				

CASE 12/1 - TYPICAL KITCHEN VENTILATING SYSTEM (FLOOR PLAN)


Title

·

Issue Date Revision Date

CASE 12/2 - KITCHEN VENTILATING SYSTEM WITH FANS INSTALLED AT KITCHEN SIDE AND USING FIRE & SMOKE DAMPER (FLOOR PLAN)

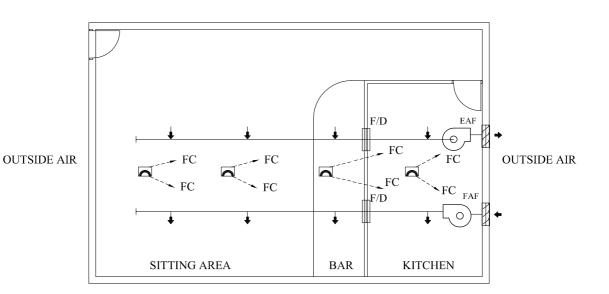
LAYOUT PLAN OF TYPICAL RESTAURANT

Important Note : Ventilating system using common air duct for both kitchen and other areas must be approved by the Director of Food & Environmental Hygiene before installation.

V/AC control logic:

EAF & FAF are not required to be shutdown.

Requirement: Fire & smoke dampers (F&S/D) shall be installed to maintain compartmentation between kitchen and other areas in the event of fire. F&S/D should be activated either by local space smoke detectors installed at the non-kitchen areas or by an automatic detection device such as smoke detector, heat detector or flow switch of sprinkler system etc. as appropriate installed in the kitchen.


Remarks

DC : Damper control

Please refer to "Notes" on drawing no. FS-VEN-101 for other acceptable methods to activate the V/AC control system when the automatic detection device as shown above is not applicable.

	Title : CAS	,		G SYSTEM WITH FANS SMOKE DAMPER	5 INSTAL	LED	AT KITC	HEN SIDE
	Drawn by	: C. H. WONG	Drawing No.	: FS-VEN-129	Ene	FIRE	SERVICES	DEPARTMENT
	Checked by	: K. C. HEUNG	Scale	: NIL	FIRE		防處	
 [Issue Date	: AUG. 2005	de Avices	113		
1			Revision Date	:	HONG KONE			

CASE 12/3 - KITCHEN VENTILATING SYSTEM WITH FANS INSTALLED AT KITCHEN SIDE WITHOUT USING FIRE & SMOKE DAMPER (FLOOR PLAN)

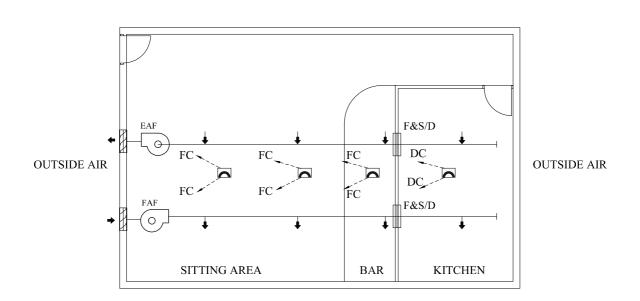
LAYOUT PLAN OF TYPICAL RESTAURANT

Important Note : Ventilating system using common air duct for both kitchen and other areas must be approved by the Director of Food & Environmental Hygiene before installation.

V/AC control logic:

EAF & FAF must be shutdown irrespective of any air flow rate. The space smoke detector installed in the kitchen may be replaced by heat detector or flow switch of sprinkler system.

Remarks


(REF_FILE

FC : Fan control

Please refer to "Notes" on drawing no. FS-VEN-101 for other acceptable methods to activate the V/AC control system when the automatic detection device as shown above is not applicable.

,	VENTILATING SYSTEM WITH FANS USING FIRE & SMOKE DAMPER	
Drawn by : C. H. WONG	Drawing No. : FS-VEN-130	FIRE SERVICES DEPARTMENT
Checked by : K. C. HEUNG	Scale : NIL	消防 處
	Issue Date : AUG. 2005	
	Revision Date :	

CASE 12/4 - KITCHEN VENTILATING SYSTEM WITH FANS INSTALLED AT NON-KITCHEN SIDE AND USING FIRE & SMOKE DAMPER (FLOOR PLAN)

LAYOUT PLAN OF TYPICAL RESTAURANT

Important Note : Ventilating system using common air duct for both kitchen and other areas must be approved by the Director of Food & Environmental Hygiene before installation.

V/AC control logic:

(a) Fire breakout in kitchen

Requirement: EAF & FAF are not required to be shutdown, fire & smoke dampers (F&S/D) shall be installed to maintain compartmentation between kitchen and other areas. F&S/D should be activated by an automatic detection device such as smoke detector, heat detector or flow switch of sprinkler system etc. as appropriate installed in the kitchen.

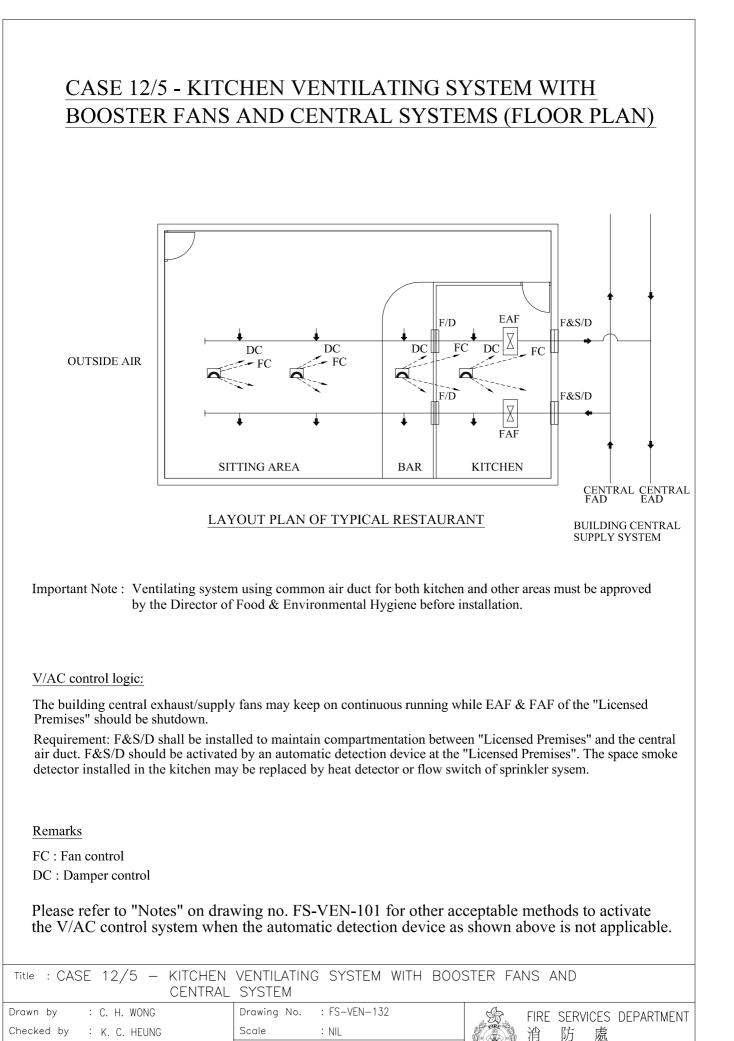
(b) Fire breakout in sitting area

Requirement: EAF & FAF are required to be shutdown.

Remarks

FC : Fan control

DC : Damper control


Please refer to "Notes" on drawing no. FS-VEN-101 for other acceptable methods to activate the V/AC control system when the automatic detection device as shown above is not applicable.

Title : CAS	SE 12/4 – KITCHEN SIDE AN		G SYSTEM WITH RE & SMOKE DA		ALLED	AT NON	-KITCHEN
Drawn by	: C. H. WONG	Drawing No.	: FS-VEN-131	S.	FIRE	SERVICES	DEPARTMENT
Checked by	: K. C. HEUNG	Scale	: NIL	FIRE)治	防處	DEPARTMENT

: AUG. 2005

Issue Date

Revision Date

: AUG. 2005

Issue Date Revision Date

لببا
щ.
<u>п – –</u>
Ë.
°∠
\times