CODES OF PRACTICE

FOR

MINIMUM FIRE SERVICE INSTALLATIONS

AND EQUIPMENT

AND

INSPECTION, TESTING AND MAINTENANCE OF

INSTALLATIONS AND EQUIPMENT

July 2005
CONTENTS

CODE OF PRACTICE FOR
MINIMUM FIRE SERVICE INSTALLATIONS AND EQUIPMENT

<table>
<thead>
<tr>
<th>Part</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>General</td>
<td>1–2</td>
</tr>
<tr>
<td>II</td>
<td>Table and Definitions of Systems/Installations/Equipment</td>
<td>3–6</td>
</tr>
<tr>
<td>III</td>
<td>Classification of Premises and Definitions</td>
<td>7–9</td>
</tr>
<tr>
<td>IV</td>
<td>Requirements for Premises</td>
<td>10–46</td>
</tr>
<tr>
<td>V</td>
<td>Specification</td>
<td>47–74</td>
</tr>
</tbody>
</table>

CODE OF PRACTICE FOR
INSPECTION, TESTING AND MAINTENANCE OF INSTALLATIONS AND EQUIPMENT

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary Note</td>
<td>1</td>
</tr>
<tr>
<td>Part I — General</td>
<td>1–2</td>
</tr>
<tr>
<td>Part II — Inspection, Testing and Maintenance</td>
<td>2–15</td>
</tr>
<tr>
<td>Part III — Miscellaneous</td>
<td>15</td>
</tr>
<tr>
<td>List of Appendices</td>
<td>16</td>
</tr>
<tr>
<td>Appendix 1 — Checklist for Actuating Devices and Operation of Fire Shutter</td>
<td>17–18</td>
</tr>
<tr>
<td>Appendix 2 — Checklist for CO₂/Clean Agent Extinguishing System</td>
<td>19–23</td>
</tr>
<tr>
<td>Appendix 3 — Checklist for Emergency Generator Installation</td>
<td>24–28</td>
</tr>
<tr>
<td>Appendix 4 — Checklist for Inspection of Fire Detection and Alarm System</td>
<td>29–45</td>
</tr>
<tr>
<td>Appendix 5 — Checklist for Fire Hydrant and Hose Reel Installation</td>
<td>46–56</td>
</tr>
<tr>
<td>Appendix 6 — Minimum Fire Resisting Cable Requirements for Fire Service Installations</td>
<td>57–58</td>
</tr>
<tr>
<td>Appendix 7 — Notification to FSD on the occasion building FSI is shut down for works</td>
<td>59</td>
</tr>
<tr>
<td>Appendix 8 — Notes on Fire Extinguishers and Fire Blankets (Suitability and Maintenance)</td>
<td>60–71</td>
</tr>
</tbody>
</table>
CODE OF PRACTICE

FOR

MINIMUM FIRE SERVICE INSTALLATIONS

AND EQUIPMENT
1

PART I

GENERAL

1.1 Title
This Code of Practice shall be titled “Minimum Fire Service Installations and Equipment” hereinafter referred to as “The Code”.

1.2 Definitions

“Building” means
As defined in Buildings Ordinance Cap. 123.

“Cubical Extent” means
The space contained within the external surfaces of the walls and roof of a building and the upper surface of the floor of its lowest storey, excluding any space within any enclosure on the roof used exclusively for accommodating a water tank or lift gear or any other services, and, if any side of the building is not enclosed by a wall, that side shall be deemed to be enclosed by a wall extending downwards from the outer edge of the roof.

“Fire Compartment” means
An enclosed space in a building that is separated from all other parts of the building by enclosing construction providing a fire separation that may be required to have a fire-resisting rating.

“Fire Load” means
The theoretical amount of heat that may be released during the burning of combustibles in the building under fire conditions and is computed by the formula:

$$\text{Calorific value of contents in MJ/kg} \times \text{weight of contents in kg} \div \text{Floor area in square metres}$$

“Fire Service Installations or Equipment” means
Any installation or equipment manufactured, used or designed to be used for the purpose of:
(a) extinguishing, attacking, preventing or limiting a fire;
(b) giving warning of a fire;
(c) providing access to any premises or place for the purpose of extinguishing, attacking, preventing or limiting a fire;
(d) facilitating the evacuation from any premises in case of fire;
(e) providing a stand-by power supply to an installation or equipment the purposes of which are mentioned in paragraphs (a) to (d) in the event of the loss of normal power supply.

“Natural Venting of Staircases” means
As an alternative to pressurisation of staircase by provision of venting of smoke from staircase in accordance with Section 2 of BS 5588: Part 5: 1991 in particular paras. 8.4(a), (b) and (h) and the latest version of the Standard.

“Place” means
Any area, lot or site on which buildings are located.

“Premises” means
Any building works or structure which is subject to the formal approval or consent of Government for its construction, alteration, change of use or demolition.

“Protected Means of Escape” means
Protected corridors, protected lobbies (including lobbies protecting Fireman’s lift) and protected staircases as defined in the Code of Practice for Means of Escape published by the Buildings Department.

“Sleeping Risk” means
Increased life risk when the occupants, being asleep and with their consciousness nearly suspended, required additional assistance in the event of a fire either due to:
— their physical conditions, such as the old, the infirm and the children, or
— their transient presence in a strange building, and are unable to identify the means of escape.

Definitions of systems and classification of premises are at Parts II & III respectively.
1.3 Discretionary powers of the Director of Fire Services

Compliance with the prescriptive provisions in this Code may be regarded as a reliable way to satisfy the requirements for fire service installations or equipment. However, the Director of Fire Services may, in the case of any particular building, vary any of the requirements of the Code (whether by requiring the provision of any fire service installations or equipment not indicated in the Code either in addition to or in substitution for any fire service installations or equipment so indicated or by relaxing any of the requirements in the Code or otherwise) where, in his opinion, such a variation is required in order to ensure the provision of all such fire service installations and equipment, as, having regard to the purpose for which the building is intended to be put, comprise the minimum fire service installations and equipment necessary for that building/premises, or as the case may be, where such a variation is not inconsistent with the provision for the building of all such fire service installations and equipment as aforesaid.

For buildings of special designs or hazards which necessitate special considerations, the Director of Fire Services may accept, on a case by case basis, fire engineering approach as an alternative to the prescriptive provisions provided that the fire engineering approach should not provide inferior safety standard to the prescriptive requirements. Methodology for application of the fire engineering approach should outline a structured fire engineering principle(s) to the assessment of total building fire safety effectiveness and to the achievement of pre-identified design objective(s) having taken into consideration of the objectives of fire service installations and equipment for the protection of life and property of the people within the premises and the firefighting personnel in the event of emergency.

1.4 Approval of plans for building works

The Building Authority may, under Section 16(1)(b) of the Buildings Ordinance, refuse to give his approval of any plans of building works where:

“the plans are not endorsed with or accompanied by a certificate from the Director of Fire Services certifying either:

(i) that, having regard to the purpose to which the building is intended to be put (which purpose shall be stated in the certificate), no fire service installation or equipment is necessary in connection with the building that will result from the carrying out of the building works shown on the plans; or

(ii) that the plans have been examined and are approved by him as showing all such fire service installations and equipment as in his opinion, having regard to the purpose to which the building is intended to be put (which purpose shall be stated in the certificate), comprise the minimum fire service installations and equipment necessary for the building in accordance with the Code of Practice published from time to time by the Director of Fire Services”.

1.5 Provisions of emergency vehicular access and street fire hydrants

When designing their projects, the Authorized Persons should take into account the provisions of emergency vehicular access and street fire hydrants for the development in addition to the fire service installations and equipment in the building(s).

1.6 Design of fireman’s lift and firefighting and rescue stairway

Whilst the requirements for fireman’s lift and firefighting and rescue stairway are included in this Code, it should be pointed out that these are formulated in accordance with Reg. 41B and 41C of the Building (Planning) (Amendment) Regulations 1995 and as such are not considered as fire service installations within the meaning of para 1.2 above.

1.7 Standards

The standards, specifications, rules, statutory requirements, etc. quoted in this Code shall be the current version at the time of building plans submission for approval.

For any non-standard provision of Fire Service Installations or Equipment, the standards and specifications shall conform to the prescribed requirements as specified by the Director of Fire Services.
PART II

TABLE AND DEFINITIONS OF SYSTEMS/INSTALLATIONS/EQUIPMENT

2.1 Table

The following systems/installations/equipment may be required to be installed in various premises under this Code:

Audio/visual advisory system
Automatic actuating devices
Automatic fixed installation other than water
Automatic fixed installation using water
Deluge system
Drencher system
Dust detection system
Dynamic smoke extraction system
Emergency generator
Emergency lighting
Exit sign
Fire alarm system
Fire control centre
Fire detection system
Fire hydrant/hose reel system
Fireman’s lift
Firefighting and rescue stairway
Fixed automatically operated approved appliance
Fixed foam system
Gas detection system
Gas extraction system
Portable hand-operated approved appliance
Pressurization of staircase
Ring main system with fixed pump(s)
Sprinkler system
Static smoke extraction system
Street fire hydrant system
Supply tank
Ventilation/air conditioning control system
Water mist system
Water spray system
Water supply

2.2 Definitions

“Audio/visual advisory system” means
Equipment which is supplementary to Exit sign and fire alarm warning devices which, when operated in the event of a fire, provides audio/visual indication of safe direction of egress from the area.

“Automatic actuating devices” means
Building components such as doors, shutters, dampers, fire curtains, roof vents, etc., and the devices for automatically controlling their movement in the event of fire.
“Automatic fixed installation other than water” means
A system of cylinders, pipes, valves, and delivery points so designed as to automatically detect and instantaneously attack a fire with an inert medium and sound an alarm (e.g. CO₂ protection of electrical equipment).

“Automatic fixed installation using water” means
A system of water supplies, pumps, pipes, valves and delivery points so arranged as to automatically detect and instantaneously attack a fire with water and sound an alarm. Such requirements for this item may include sprinkler, drencher, deluge, water mist or water spray system as required and appropriate.

“Deluge system” means
A system requiring a discharge of water over a considerable area in rapid and certain response to a fire.

“Drencher system” means
A system which provides a curtain of water for protection against internal and external “exposure” to fire, and/or the protection of large openings.

“Dust detection system” means
Equipment designed to give warning of a potentially explosive concentration of dust.

“Dynamic smoke extraction system” means
A mechanical ventilating system capable of removing smoke and products of combustion from a designated fire compartment, and also supplying fresh air in such a manner as to maintain a specified smoke free zone below the smoke layer.

“Emergency generator” means
An independently powered electrical generator of sufficient electrical capacity to meet the essential services it is required to provide.

“Emergency lighting” means
A system of artificial lighting designed to provide adequate illumination and indication of exit routes within a building under emergency conditions.

“Exit sign” means
A fixed illuminated sign indicating an approved exit route.

“Fire alarm system” means
Any manually operated system designed to give warning of fire.

“Fire control centre” means
A compartment (situated at street level having direct access to open air and vehicular approach) containing annunciator boards, controls, terminals, etc. of the fire protection and life safety systems within that building/complex.

“Fire detection system” means
Any system designed to detect automatically the presence of smoke, heat, combustion products or flame and give warning of same.

“Fire hydrant/hose reel system” means
An installation of pipes, water tanks, pumps, hydrant outlets and/or hose reels in a building to provide a ready means by which a jet of water can be delivered in any part of the building for the purpose of fire fighting.

“Fireman’s lift” means
A lift designed and installed to be used by firemen in the event of a fire.

“Firefighting and rescue stairway” means
A stairway accommodating an access staircase and a fireman’s lift.

“Fixed automatically operated approved appliance” means
Any fire service equipment which is manufactured, used or designed to be used as an independent unit for the purpose of extinguishing, attacking, preventing or limiting a fire, but automatic in operation and fixed in position, e.g. a sprayer unit in a Dangerous Goods store.

“Fixed foam system” means
Any combination of generators; pipework; valves; nozzles and pourers designed to deliver finished foam to the seat of a fire which may be automatic in operation.
“Gas detection system” means
 Equipment designed to give warning of the presence of a noxious, toxic, irritant or inflammable
 vapour in potentially dangerous concentration.

“Gas extraction system” means
 An electrically/mechanically operated system capable of removing flammable vapours/gases from the
 part of the building where such vapours/gases may be generated through normal operation of the plants
 or work processes.

“Portable hand-operated approved appliance” means
 Any fire service equipment which is manufactured, used or designed to be used as an independent unit
 for the purpose of extinguishing, attacking, preventing or limiting a fire, e.g. water type, foam, inert
 gas, any chemical extinguishers, fire blankets and sand buckets.

“Pressurization of staircase” means
 A system designed to protect staircases against the ingress of smoke by maintaining the air within
 staircases at pressures higher than those in adjacent parts of the building. The number of staircase(s)
 requiring pressurization shall be determined by the cubical extent of the basement, or building as the
 case may be, according to the following table provided that the number of pressurized staircases
 required shall not exceed the total number of staircases required by the Code of Practice for Means of
 Escape:

<table>
<thead>
<tr>
<th>Cubical Extent (cubic metres)</th>
<th>No. of Staircase(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(For basements of three or more levels)</td>
<td></td>
</tr>
<tr>
<td>Exceeding 7 000 but not exceeding 56 000</td>
<td>1</td>
</tr>
<tr>
<td>Exceeding 56 000 but not exceeding 112 000</td>
<td>2</td>
</tr>
<tr>
<td>Exceeding 112 000 but not exceeding 168 000</td>
<td>3</td>
</tr>
<tr>
<td>Exceeding 168 000</td>
<td>4</td>
</tr>
<tr>
<td>(For buildings other than hotels and hospitals)</td>
<td></td>
</tr>
<tr>
<td>Exceeding 28 000 but not exceeding 56 000</td>
<td>1</td>
</tr>
<tr>
<td>Exceeding 56 000 but not exceeding 112 000</td>
<td>2</td>
</tr>
<tr>
<td>Exceeding 112 000 but not exceeding 168 000</td>
<td>3</td>
</tr>
<tr>
<td>Exceeding 168 000</td>
<td>4</td>
</tr>
<tr>
<td>(For hotels and hospitals)</td>
<td></td>
</tr>
<tr>
<td>Not exceeding 56 000</td>
<td>1</td>
</tr>
<tr>
<td>Exceeding 56 000 but not exceeding 112 000</td>
<td>2</td>
</tr>
<tr>
<td>Exceeding 112 000 but not exceeding 168 000</td>
<td>3</td>
</tr>
<tr>
<td>Exceeding 168 000</td>
<td>4</td>
</tr>
</tbody>
</table>

“Ring main system with fixed pump(s)” means
 A fixed system of piping fitted with delivery outlets at fixed intervals and permanently primed pump(s)
 set for imparting pressure and flow to the water.

“Sprinkler system” means
 A system designed to discharge water under pressure from sprinkler heads (detecting devices) at/or
 near the point of origin of the fire and to sound an alarm.

“Static smoke extraction system” means
 A smoke extraction system utilizing smoke reservoirs; localised ducting; and permanent openings
 and/or automatic opening of windows, panels or external louvres actuated by smoke detectors; to
 remove, on the principles of natural ventilation, smoke and products of combustion from a designated
 fire compartment.
 Static smoke extraction system may be provided, as the alternative to the Dynamic smoke extraction
 system if ALL of these three conditions are satisfied:
 (a) smoke reservoirs each not exceeding 500 square metres in area can be provided under the ceiling
 by fixed or automatically operated smoke screens to the specifications as contained in Part V, and
 (b) the horizontal distance between the perimeter of any smoke reservoir and the external wall of the
 building where windows, panels or external louvres functioning as smoke outlets are installed,
 does not exceed 30 metres and that one side of the reservoir shall abut the external wall, and
(c) the aggregate area of windows, panels or external louvres functioning as smoke outlets is not less than 2% of the floor area this system serves, and that at least half of these outlets are operable by automatic actuating devices.

“Street fire hydrant system” means
A system of water mains and fire hydrants with water supplied by a government water main, or a static water supply with pumping facilities.

“Supply tank” means
A water tank containing a specified quantity of water reserved solely for fire fighting.

“Ventilation/air conditioning control system” means
An automatic control system, designed to stop mechanically induced air movement within a designated fire compartment, actuated by smoke detectors and provided with a central, manually operated back up facility.

“Water mist system” means
A system connected to a water supply or water and atomizing media supplies and equipped with nozzles capable of generating water mist to control, suppress, or extinguish fires.

“Water spray system” means
A system designed for extinguishing or controlling fires involving flammable liquids by emulsification, cooling and smothering.

“Water supply” means
A supply acceptable to the Water Authority and the Director of Fire Services.
PART III

CLASSIFICATION OF PREMISES AND DEFINITIONS

3.1 Definitions

“Audio/Visual Production Facilities” means
Premises used for audio/visual production such as film and television studios.

“Basement Storeys” means
Any storey of a building below the ground storey and from which all required exit routes are in an upward direction to the ground storey.

“Car Parking Facilities” means
See “Car Port” and “Garage”.

“Car Port” means
A covered parking area open for its entire length or width on at least two sides.

“Cold Storage Area” means
Any area incorporating a unit of specific volume which is entirely given over to storage in an atmosphere of less than 10°C above zero.

“Commercial Building” means
A building, or that part of the building, constructed or intended to be used for business, trade or entertainment.

“Composite Building” means
Any building which is constructed or intended to be used for a combination of any two or more of the following purposes, and in respect of each of these purposes, separate sections of this Code shall apply:

(a) Domestic
(b) Commercial
(c) Institutional
(d) Hotel

“Curtain Walled Building” means
A building which has curtain walls. A curtain wall is a non-load bearing wall primarily fixed in front of the structural frame with its own dead weight and wind loads transferred to the structural frame through anchorages.

“Domestic Building” means
A building constructed or intended to be used for habitation.

“Garage” means
A covered parking area enclosed by walls, with or without windows, on more than two sides.

“Godown” means
A warehouse or any building used wholly or in part for the storage of goods or raw material of any kind.

“Group I” means
A designated area of special hazard normally within a building.

“Group II” means
A building, group of buildings or complex considered to present special hazard.

“High Rise Building” means
Any building of which the floor of the uppermost storey exceeds 30 m above the point of staircase discharge at ground floor level.

“Hotel” means
Any building used wholly or in part primarily for the purposes of accommodation on a commercial basis.
“Industrial Building” means
Any building used wholly or in part in any process for or incidental to any of the following purposes, namely:
(a) the making of any article or of part of any article; or
(b) the altering, repairing, ornamenting, finishing, cleaning or washing or breaking up or demolition of any article; or
(c) the adapting for sale of any article being a building in which work is carried out by way of trade or for purposes of gain.

“Institutional Building” means
Any building used wholly or in part for the purposes of the following:
(a) Club premises
(b) Educational establishments
(c) Hostels
(d) Hospitals including mental institutions and clinics
(e) Prisons and similar corrective institutions
(f) Sanatoria

“Low Rise Building” means
Any building of which the floor of the uppermost storey does not exceed 30 m above the point of staircase discharge at ground floor level.

“Mechanical plant rooms” means,
“Room accommodating mechanical plants such as air handling unit (AHU), fan, air conditioning (A/C), chiller, compressor, water pump, fire pump and the like."

“Passenger Terminals/Station” means
Any building and/or place used wholly or in part for the purposes of embarking/disembarking passengers to/from any mode of transport.

“Refuge Floor” means
A protected floor that serves as a refuge for the occupants of the building to assemble in case of fire.

3.2 Special and other risks

Group I: A designated area of special hazard normally within a building i.e.:
Audio/Visual production facilities
Battery Rooms and electrical charging facilities
Boiler Rooms
Bowling Alleys
Cold Storage Areas
Dangerous Goods Stores
Consumer electrical equipment, incorporating transformers, switchgears, generators/alternators, requiring separate installation
Kitchens
Lift Motor Rooms
Telephone Distribution Equipment, computer installation and similar installations

Group II: A building, group of buildings or complex considered to present special hazard(s) i.e.:
Aircraft Maintenance and repair facilities
Audio/Visual Production Facilities (Building(s) devoted to this purpose)
Bulk Fuel Storages
Chemical Manufacturing/Processing Plants
Cold Storage Areas (Building(s) devoted to this purpose)
Container Terminals, yards and freight stations
Curtain Walled Buildings
Dangerous Goods Stores (Range of D.G. Stores in an area devoted to this purpose)
Explosive Production and/or Storages
Mechanical Plant Room
Open Sites of Public Assembly
Petro-Chemical Complexes
Railway Marshalling Yards
Road Tunnels
Shipyards
Substation/Switchgear Buildings

Note: “Audio/Visual Production Facilities”, “Cold Storage Areas” and “Dangerous Goods Stores” are included in both groups.
PART IV

REQUIREMENTS FOR PREMISES

General

Attention is drawn to Part I of this Code, under which the Director of Fire Services has discretionary powers to vary any requirements of this Code.

Where the requirements are not detailed hereunder for particular premises, the Director of Fire Services will determine the requirements.
CLASSIFICATION OF PREMISES AND AREAS OF SPECIAL RISKS

4.1 Aircraft Maintenance and Repair Facilities
4.2 Audio/Visual Production Facilities
4.3 Basements with total floor area not exceeding 230 m²
4.4 Basements with total floor area exceeding 230 m²
4.5 Battery Rooms and Electrical Charging Facilities
4.6 Boiler Rooms
4.7 Bowling Alleys
4.8 Bulk Fuel Storage
4.9 Car Ports
4.10 Chemical Manufacturing/Processing Plants
4.11 Cold Storage Areas (Group I) Minor (Under 140 m³ capacity)
4.12 Cold Storage Areas (Group I) Major (of and over 140 m³ capacity)
4.13 Cold Storage Areas (Group II)
4.14 Commercial Buildings—Low Rise
4.15 Commercial Buildings—High Rise
4.16 Composite Buildings
4.17 Container Terminal Yards and Freight Stations
4.18 Curtain Walled Buildings below six storeys in height
4.19 Curtain Walled Buildings of and above six storeys in height
4.20 Dangerous Goods Stores
4.21 Domestic Buildings—Low Rise (up to and including 3 storeys in height)
4.22 Domestic Buildings—Low Rise (over 3 storeys in height)
4.23 Domestic Buildings—High Rise
4.24 Consumer Electrical Equipment: incorporating transformers, switchgear, generators/alternators requiring separate installations
4.25 Explosive Production and/or storages
4.26 Garages
4.27 Hotels—Low Rise
4.28 Hotels—High Rise
4.29 Industrial/Godown Buildings—Low Rise
4.30 Industrial/Godown Buildings—High Rise
4.31 Institutional Buildings—Low Rise
4.32 Institutional Buildings—High Rise
4.33 Kitchens (other than kitchens in domestic premises)
4.34 Lift Motor Rooms
4.35 Mechanical Plant Rooms (Group I)
4.36 Mechanical Plant Rooms (Group II)
4.37 Passenger Terminals/Stations
4.38 Petro-chemical Complexes
4.39 Railway Marshalling Yards
4.40 Refuge Floors
4.41 Road Tunnels
4.42 Shipyards
4.43 Substation/Switchgear Buildings
4.44 Telephone distribution equipment, computer installation and similar installations
4.1 Aircraft maintenance and repair facilities

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Automatic actuating devices
(ii) Automatic fixed installation other than water
(iii) Automatic fixed installation using water
(iv) Dust detection system
(v) Emergency generator
(vi) Emergency lighting
(vii) Exit sign
(viii) Fire alarm system
(ix) Fire control centre
(x) Fire detection system
(xi) Fire hydrant/hose reel system
(xii) Fireman’s lift or firefighting and rescue stairway
(xiii) Fixed automatically operated approved appliance
(xiv) Fixed foam system
(xv) Gas extraction system
(xvi) Portable hand-operated approved appliance
(xvii) Ring main system with fixed pump(s)
(xviii) Ventilation/air conditioning control system

EXTENT

(i) As required by that equipment which needs to be automatically actuated.
(ii) To be provided to areas where the use of water is incompatible with the occupancy or trade.
(iii) In all areas excepting where covered by (ii) above, including staircases.
(iv) To be provided in all areas where there is a potential dust explosion hazard.
(v) An independently powered generator of sufficient electrical capacity to meet the essential services it is required to provide.
(vi) Emergency lighting shall be provided throughout the entire building and all exit routes leading to ground level.
(vii) Sufficient directional and exit sign to ensure that all exit routes from any floor within the buildings are clearly indicated as required by the configuration of staircases serving the buildings.
(viii) One actuating point and one audio warning device to be located at each hose reel point. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation.
(ix) Minimum of one, additional to be provided according to the complexity of the buildings.
(x) To be provided in areas not covered by automatic fixed installations.
(xi) There shall be sufficient hydrants and hose reels to ensure that every part of the building can be reached by a length of not more than 30 m of Fire Services hose or hose reel tubing.
(xii) As required by the Code of Practice for Means of Access for Firefighting and Rescue
(xiii) As required by occupancy.
(xiv) To be provided as an alternative to other fixed automatic systems, when required by Director of Fire Services.
(xv) Approved type for the part of building where flammable vapours may be generated, and to reduce the concentration below its lower explosive limit.
(xvi) As required by occupancy.

(xvii) To be required to cover those areas of such complexes not adequately served by public water mains.

(xviii) When a ventilation/air conditioning control system to a building is provided, it shall stop mechanically induced air movement within a designated fire compartment.

ADDITIONAL REQUIREMENTS

(i) All linings for acoustic and thermal insulation purposes in ductings and concealed locations shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(ii) All linings for acoustic, thermal insulation and decorative purposes within protected means of escape shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(iii) Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

Note: Buildings within such complexes shall conform to the requirements specified for similar premises in accordance with this Code.

4.2 Audio/visual production facilities

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Audio/visual advisory system
(ii) Automatic actuating devices
(iii) Automatic fixed installation other than water
(iv) Automatic fixed installation using water
(v) Emergency generator
(vi) Emergency lighting
(vii) Exit sign
(viii) Fire alarm system
(ix) Fire control centre
(x) Fire detection system
(xi) Fire hydrant/hose reel system
(xii) Portable hand-operated approved appliance
(xiii) Static or dynamic smoke extraction system
(xiv) Ventilation/air conditioning control system

EXTENT

(i) As required by the risk.
(ii) As required by that equipment which needs to be automatically actuated.
(iii) To be provided to areas where the use of water is undesirable for the occupancy or trade.
(iv) As required by the risk.
(v) An independently powered generator of sufficient electrical capacity to meet the essential services it is required to supply.
(vi) Emergency lighting shall be provided throughout the entire building and all exit routes leading to ground level.
(vii) Sufficient directional and exit sign to ensure that all exit routes from the premises within the buildings are clearly indicated as required by the configuration of staircases serving the building.
(viii) One actuating point and one audio warning device to be located at each hose reel point. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation.

(ix) As required by the risk.

(x) To be provided in areas not covered by automatic fixed installations.

(xi) There shall be sufficient hydrants and hose reels to ensure that every part of the building can be reached by a length of not more than 30 m of Fire Services hose or hose reel tubing.

(xii) As required by the risk.

(xiii) Required for any fire compartment exceeding 7,000 cubic metres where:

(a) the aggregate area of openable windows of the compartment does not exceed 6.25% of the floor area of that compartment, and

(b) the designed fire load of that compartment is likely to exceed 1135 MJ/square metre.

The requirement of hot smoke test will be stipulated if considered necessary by the Director of Fire Services in the building plans involving compartments:

(i) with headroom of 12 m or more; or

(ii) with irregular geometrical dimensions or extraordinary large size.

(xiv) When a ventilation/air conditioning control system to a building is provided, it shall stop mechanically induced air movement within a designated fire compartment.

ADDITIONAL REQUIREMENTS

(i) All linings for acoustic and thermal insulation purposes in ductings and concealed locations shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(ii) All linings for acoustic, thermal insulation and decorative purposes within protected means of escape shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(iii) Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

4.3 Basements with total floor area not exceeding 230 m²

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Automatic fixed installation other than water

(ii) Emergency lighting

(iii) Exit sign

(iv) Fire alarm system

(v) Fire detection system

(vi) Fire hydrant/hose reel system

(vii) Portable hand-operated approved appliance

(viii) Ventilation/air conditioning control system

EXTENT

(i) To be provided in areas of special risk.

(ii) Emergency lighting shall be provided throughout the entire basement area and all exit routes leading to ground level.

(iii) Sufficient directional and exit sign to ensure that all exit routes from the basement are clearly indicated as required by the configuration of staircases serving the basement.
(iv) One actuating point and one audio warning device to be located at each hose reel point. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation.

(v) The entire basement area shall be covered by a fire detection system, excepting carparking areas.

(vi) There shall be sufficient hydrants and hose reels to ensure that every part of the basement with the exception of strong rooms and safe deposit vaults can be reached by a length of not more than 30 m of Fire Services hose or hose reel tubing.

(vii) As required by occupancy.

(viii) When a ventilation/air conditioning control system to a building is provided, it shall stop mechanically induced air movement within a designated fire compartment.

ADDITIONAL REQUIREMENTS

(i) All linings for acoustic and thermal insulation purposes in ductings and concealed locations shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(ii) All linings for acoustic, thermal insulation and decorative purposes within protected means of escape shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(iii) Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

Note: Basements within building shall conform to the requirements specified for those occupancies of the building in accordance with this Code.

4.4 Basements with total floor area exceeding 230 m²

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Audio/visual advisory system
(ii) Automatic fixed installation other than water
(iii) Emergency lighting
(iv) Exit sign
(v) Fire alarm system
(vi) Fire detection system
(vii) Fire hydrant/hose reel system
(viii) Firefighting and rescue stairway
(ix) Portable hand-operated approved appliance
(x) Pressurization of staircase
(xi) Sprinkler system
(xii) Static or dynamic smoke extraction system
(xiii) Ventilation/air conditioning control system

EXTENT

(i) Required for any part or parts of building where the area occupied by any one single occupancy on any one floor exceeds 2 000 square metres AND where the occupants, due to their transient presence either as shoppers, audience or guests, are exposed to risks to require additional advice through such systems.

(ii) To be provided to areas where the use of water is undesirable for the occupancy or trade.

(iii) Emergency lighting shall be provided throughout the entire basement area and all exit routes leading to ground level.

(iv) Sufficient directional and exit sign to ensure that all exit routes from the basement are clearly
indicated as required by the configuration of staircases serving the basement.

(v) One actuating point and one audio warning device to be located at each hose reel point. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation.

(vi) The entire basement area shall be covered by a fire detection system, excepting car parking areas, strong rooms and safe deposit vaults which covered by (xi).

(vii) There shall be sufficient hydrants and hose reels to ensure that every part of the basement with the exception of strong rooms and safe deposit vaults can be reached by a length of not more than 30 m of Fire Services hose or hose reel tubing.

(viii) Required for basements of three or more levels, or as required by the Code of Practice for Means of Access for Firefighting and Rescue.

(ix) As required by occupancy.

(x) Required for basements of three or more levels where:
 (a) no open air access routes for firemen are provided;
 (b) the cubical extent of the basement exceeds 7 000 cubic metres; and
 (c) the designed fire load of the basement is likely to exceed 1 135 MJ/square metre.

The number of pressurized staircases to be provided shall be determined by the table stipulated under the definition of pressurization of staircase in Pt. II provided that the number of pressurized staircases required shall not exceed the total number of staircases required by the Code of Practice for Means of Escape.

(xi) In all parts of the basements excepting areas where covered by (ii), or strong rooms and safe deposit vaults covered by (vi).

(xii) Required for:
 (a) any fire compartment exceeding 7 000 cubic metres where the designed fire load is likely to exceed 1135 MJ/m2, or
 (b) industrial basements, or
 (c) basements of three or more levels except areas solely for carparking purposes.

The requirement of hot smoke test will be stipulated if considered necessary by the Director of Fire Services in the building plans involving compartments:-
 (i) with headroom of 12 m or more; or
 (ii) with irregular geometrical dimensions or extraordinary large size.

(xiii) When a ventilation/air conditioning control system to a building is provided, it shall stop mechanically induced air movement within a designated fire compartment.

ADDITIONAL REQUIREMENTS

(i) All linings for acoustic and thermal insulation purposes in ductings and concealed locations shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(ii) All linings for acoustic, thermal insulation and decorative purposes within protected means of escape shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(iii) Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

Note: Basements within building shall conform to the requirements specified for those occupancies of the building in accordance with this Code.
4.5 Battery rooms and electrical charging facilities

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Automatic fixed installation other than water
(ii) Exit sign
(iii) Fire alarm system
(iv) Fire detection system
(v) Gas extraction system
(vi) Portable hand-operated approved appliance
(vii) Ventilation/air conditioning control system

EXTENT

(i) To be provided to areas where the use of water is undesirable for the risk.
(ii) Sufficient directional and exit sign to ensure that all exit routes from any floor within the premises are clearly indicated as required by the configuration of staircase serving the building.
(iii) One actuating point and one audio warning device to be located at all exit doorways. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for audio/visual warning device initiation.
(iv) To be provided in areas not covered by automatic fixed installations.
(v) Approved type for the part of building where flammable vapours may be generated, and to reduce the concentration below its lower explosive limit.
(vi) As required by occupancy.
(vii) When a ventilation/air conditioning control system to a building is provided, it shall stop mechanically induced air movement within a designated fire compartment.

ADDITIONAL REQUIREMENT

Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

4.6 Boiler rooms

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Automatic actuating devices
(ii) Automatic fixed installation other than water
(iii) Automatic fixed installation using water
(iv) Emergency lighting
(v) Exit sign
(vi) Fire detection system
(vii) Fixed foam system
(viii) Portable hand-operated approved appliance

EXTENT

(i) As required by that equipment which needs to be automatically actuated.
(ii) To be provided in gas/oil boiler rooms.
(iii) To be provided in gas/oil boiler rooms where automatic fixed installation other than water are not installed.
(iv) Emergency lighting shall be provided throughout the entire area and all exit routes leading to ground level.
(v) Sufficient directional and exit sign to ensure that all exit routes from the area within the buildings are clearly indicated as required by the configuration of staircases serving the buildings.
(vi) To be provided in areas not covered by automatic fixed installations.
(vii) To be provided in oil boiler rooms located in basements in lieu of the automatic fixed installations.
(viii) As required by the risk.

ADDITIONAL REQUIREMENT

Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

4.7 Bowling alleys

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Audio/visual advisory system
(ii) Automatic actuating devices
(iii) Automatic fixed installation other than water
(iv) Emergency generator
(v) Emergency lighting
(vi) Exit sign
(vii) Fire alarm system
(viii) Fire detection system
(ix) Fire hydrant/hose reel system
(x) Portable hand-operated approved appliance
(xi) Sprinkler system
(xii) Ventilation/air conditioning control systems

EXTENT

(i) Required for any part or parts of building where the area used for bowling alley on any one floor exceeds 2 000 square metres AND where bowlers and spectators, due to their transient presence, are exposed to risks to require additional advice through such systems.
(ii) As required by that equipment which needs to be automatically actuated.
(iii) To be provided to areas where the use of water is undesirable for the risk.
(iv) An independently powered generator of sufficient electrical capacity to meet the essential services it is required to provide.
(v) Emergency lighting shall be provided throughout the entire premises and all exit routes leading to ground level.
(vi) Sufficient directional and exit sign to ensure that all exit routes from any floor within the building are clearly indicated as required by the configuration of staircases serving the building.
(vii) One actuating point and one audio warning device to be located at each hose reel point. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation.
(viii) To be provided in areas not covered by automatic fixed installations.
(ix) There shall be sufficient hydrants and hose reels to ensure that every part of the premises can be reached by a length of not more than 30 m of Fire Services hose or hose reel tubing.
(x) As required by occupancy.
(xi) In all parts of the alleys and associated areas including staircases, common corridors and toilets.
(xii) When a ventilation/air conditioning control system to a building is provided, it shall stop mechanically induced air movement within a designated fire compartment.

ADDITIONAL REQUIREMENTS

(i) All linings for acoustic and thermal insulation purposes in ductings and concealed locations shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.
(ii) All linings for acoustic, thermal insulation and decorative purposes within protected means of escape shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(iii) Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

4.8 Bulk fuel storage

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Appropriate requirements of Model Code of Safe Practice published by Institute of Petroleum
(ii) Automatic actuating devices
(iii) Automatic fixed installation other than water
(iv) Automatic fixed installation using water
(v) Emergency generator
(vi) Emergency lighting
(vii) Exit sign
(viii) Fire alarm system
(ix) Fire control centre
(x) Fire detection system
(xi) Fire hydrant/hose reel system
(xii) Fixed automatically operated approved appliance
(xiii) Fixed foam system
(xiv) Portable hand-operated approved appliance
(xv) Ring main system with fixed pump(s)

EXTENT

(i) As considered necessary by Director of Fire Services.
(ii) As required by that equipment which needs to be automatically actuated.
(iii) To be provided to areas of special risk where the use of water is undesirable for the risk.
(iv) To be provided for the cooling and protection of products tanks, product pipelines and jetties.
(v) An independently powered generator of sufficient electrical capacity to meet the essential services it is required to provide.
(vi) Emergency lighting shall be provided throughout the entire building and all exit routes leading to ground level.
(vii) Sufficient directional and exit sign to ensure that all exit routes from any floor within the buildings are clearly indicated as required by the configuration of staircases serving the buildings.

(viii) One actuating point and one audio warning device to be located at each hose reel point. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation.
(ix) Minimum of one, additional to be provided according to the complexity of the area.
(x) To be provided in areas not covered by automatic fixed installations.
(xi) There shall be sufficient hydrants and hose reels to ensure that every part of the buildings can be reached by a length of not more than 30 m of Fire Services hose or hose reel tubing.
(xii) As required by occupancy.
(xiii) To be provided as an alternative to other fixed automatic systems, when required by the Director of Fire Services.
(xiv) As required by occupancy.
(xv) To be provided to cover those areas of such complexes, not adequately served by public water mains.
Note: Buildings within such complexes shall conform to the requirements specified for similar premises in accordance with this Code.

4.9 Car ports

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Exit sign
(ii) Fire alarm system
(iii) Fire hydrant/hose reel system
(iv) Fireman’s lift
(v) Portable hand-operated approved appliance

EXTENT

(i) Sufficient directional and exit sign to ensure that all exit routes from premises within the building are clearly indicated as required by the configuration of staircases serving the building.
(ii) As required by the risk. If required, visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access.
(iii) As required by the risk.
(iv) As required by the Code of Practice for Means of Access for Firefighting and Rescue.
(v) As required by the risk.

ADDITIONAL REQUIREMENT

Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

Note: Carports within buildings shall conform to the requirements specified for those buildings in accordance with this Code.

4.10 Chemical manufacturing/processing plants

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Automatic actuating devices
(ii) Automatic fixed installation other than water
(iii) Automatic fixed installation using water
(iv) Dust detection system
(v) Emergency generator
(vi) Emergency lighting
(vii) Exit sign
(viii) Fire alarm system
(ix) Fire control centre
(x) Fire detection system
(xi) Fixed automatically operated approved appliance
(xii) Fixed foam system
(xiii) Gas detection system
(xiv) Gas extraction system
(xv) Portable hand-operated approved appliance
(xvi) Ring main system with fixed pump(s)
(xvii) Special equipment/requirements
(xviii) Ventilation/air conditioning control system
EXTENT

(i) As required by that equipment which needs to be automatically actuated.

(ii) To be provided to areas where the use of water is undesirable for the risk.

(iii) In all areas excepting where covered by (ii) above, including staircases.

(iv) To be provided in all areas where there is a potential dust explosion hazard.

(v) An independently powered generator of sufficient electrical capacity to meet the essential services it is required to provide.

(vi) Emergency lighting shall be provided to all buildings within the premises and in addition, such lighting shall also be provided to ensure adequate external illumination to permit safe evacuation to the outside of the site boundary.

(vii) Sufficient directional and exit sign to ensure that all exit routes from any floor within the buildings are clearly indicated as required by the configuration of the staircases serving the buildings.

(viii) One actuating point and one audio warning device to be located at each hose reel point within the buildings. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation, and in addition, one actuating point and audio/visual warning device to be provided at each hydrant outlet on the ring main system.

(ix) Minimum of one, additional to be provided according to the layout of the complex.

(x) To be provided in areas not covered by automatic fixed installations.

(xi) As required by the risk.

(xii) As required by the risk.

(xiii) To be provided in all areas of risk.

(xiv) Approved types for the part of building where flammable vapours may be generated, and to reduce the concentration below its lower explosive limit.

(xv) As required by the risk.

(xvi) To be provided to cover those areas of such complexes not adequately served by public water mains.

(xvii) As required by the Director of Fire Services.

(xviii) When a ventilation/air conditioning control system to a building is provided, it shall stop mechanically induced air movement within a designated fire compartment.

Note: Buildings within such complexes shall conform to the requirements specified for similar premises in accordance with this Code.

ADDITIONAL REQUIREMENT

Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

4.11 Cold storage areas (Group I) minor (under 140 m³ capacity)

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Portable hand-operated approved appliance.

EXTENT

(i) As appropriate to the plant and construction.
ADDITIONAL REQUIREMENTS

(i) All linings for acoustic and thermal insulation purposes in ductings and concealed locations shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(ii) All linings for acoustic, thermal insulation and decorative purposes within protected means of escape shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(iii) Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

4.12 Cold storage areas (Group I) major (of and over 140 m³ capacity)

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Automatic fixed installation using water
(ii) Fire alarm system
(iii) Portable hand-operated approved appliance

EXTENT

(i) A dry pipe system to be provided in the cold room, as defined by Loss Prevention Council Rules.
(ii) The system provided to the building to be extended to cover the cold storage area.
(iii) As appropriate to the plant and construction.

ADDITIONAL REQUIREMENTS

(i) All linings for acoustic and thermal insulation purposes in ductings and concealed locations shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(ii) All linings for acoustic, thermal insulation and decorative purposes within protected means of escape shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(iii) Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

4.13 Cold storage areas (Group II)

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Automatic actuating devices
(ii) Automatic fixed installation using water
(iii) Emergency generator
(iv) Emergency lighting
(v) Exit sign
(vi) Fire alarm system
(vii) Fire hydrant/hose reel system
(viii) Gas detection system
(ix) Portable hand-operated approved appliance

EXTENT

(i) As required by that equipment which needs to be automatically actuated.
(ii) In all areas including staircases with the exception of cold storage room which should be provided with a dry pipe system in accordance with Loss Prevention Council Rules.

(iii) An independently powered generator of sufficient electrical capacity to meet the essential services it is required to provide.

(iv) Emergency lighting shall be provided throughout the entire area.

(v) Sufficient directional and exit sign to ensure that all exit routes from any floor within the area are clearly indicated as required by the configuration of staircases serving the area.

(vi) One actuating point and one audio warning device to be located at each hose reel point. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation.

(vii) There shall be sufficient hydrants and hose reels to ensure that every part of the building can be reached by a length of not more than 30 m of Fire Services hose or hose reel tubing.

(viii) To be provided in those areas as required by the risk.

(ix) As required by occupancy.

ADDITIONAL REQUIREMENTS

(i) All linings for acoustic and thermal insulation purposes in ductings and concealed locations shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(ii) All linings for acoustic, thermal insulation and decorative purposes within protected means of escape shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(iii) Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

4.14 Commercial buildings—low rise

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Audio/visual advisory system

(ii) Automatic actuating devices

(iii) Automatic fixed installation other than water

(iv) Emergency generator

(v) Emergency lighting

(vi) Exit sign

(vii) Fire alarm system

(viii) Fire detection system

(ix) Fire hydrant/hose reel system

(x) Fireman’s lift

(xi) Portable hand-operated approved appliance

(xii) Sprinkler system

(xiii) Static or dynamic smoke extraction system

(xiv) Ventilation/air conditioning control system

EXTENT

(i) Required for any part or parts of building where the area occupied by any one single occupancy on any one floor exceeds 2 000 square metres AND where the occupants, due to their transient presence either as shoppers, audience or guests, are exposed to risks to require additional advice through such systems.

(ii) As required by that equipment which needs to be automatically actuated.

(iii) To be provided to areas where the use of water is undesirable for the occupancy or trade.
(iv) An independently powered generator of sufficient electrical capacity to meet the essential services it is required to provide.

(v) Emergency lighting shall be provided throughout the entire building and all exit routes leading to ground level.

(vi) Sufficient directional and exit sign to ensure that all exit routes from any floor within the building are clearly indicated as required by the configuration of staircases serving the building.

(vii) One actuating point and one audio warning device to be located at each hose reel point. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation.

(viii) To be provided in areas not covered by automatic fixed installations.

(ix) There shall be sufficient hydrants and hose reels to ensure that every part of the building can be reached by a length of not more than 30 m of Fire Services hose or hose reel tubing.

(x) As required by the Code of Practice for Means of Access for Firefighting and Rescue.

(xi) As required by occupancy.

(xii) Required for buildings with total floor areas exceeding 230 square metres and to cover all parts of the buildings including staircases, common corridors and toilets.

(xiii) Required for:

(a) atrium of the building, if the compartment of the atrium exceeds 28 000 cubic metres, or any basement level or floor of building forming part of that compartment which exceeds 7 000 cubic metres, or

(b) any fire compartment exceeding 7 000 cubic metres in that building where:

 (i) the aggregate area of openable windows of the compartment does not exceed 6.25% of the floor area of that compartment, and

 (ii) the designed fire load is likely to exceed 1 135 MJ/square metre.

The requirement of hot smoke test will be stipulated if considered necessary by the Director of Fire Services in the building plans involving compartments:-

(i) with headroom of 12 m or more; or

(ii) with irregular geometrical dimensions or extraordinary large size.

(xiv) When a ventilation/air conditioning control system to a building is provided, it shall stop mechanically induced air movement within a designated fire compartment.

ADDITIONAL REQUIREMENTS

(i) All linings for acoustic and thermal insulation purposes in ductings and concealed locations shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(ii) All linings for acoustic, thermal insulation and decorative purposes within protected means of escape shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(iii) Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

4.15 Commercial buildings—high rise

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Audio/visual advisory system

(ii) Automatic actuating devices

(iii) Automatic fixed installation other than water

(iv) Emergency generator

(v) Emergency lighting
(vi) Exit sign
(vii) Fire alarm system
(viii) Fire control centre
(ix) Fire detection system
(x) Fire hydrant/hose reel system
(xi) Fireman’s lift
(xii) Portable hand-operated approved appliance
(xiii) Pressurization of staircase
(xiv) Sprinkler system
(xv) Static or dynamic smoke extraction system
(xvi) Ventilation/air conditioning control system

EXTENT

(i) Required for any part or parts of building where the area occupied by any one single occupancy on any one floor exceeds 2,000 square metres AND where the occupants, due to their transient presence either as shoppers, audience or guests, are exposed to risks to require additional advice through such systems.

(ii) As required by that equipment which needs to be automatically actuated.

(iii) To be provided to areas where the use of water is undesirable for the occupancy or trade.

(iv) An independently powered generator of sufficient electrical capacity to meet the essential services it is required to provide.

(v) Emergency lighting shall be provided throughout the entire building and all exit routes leading to ground level.

(vi) Sufficient directional and exit sign to ensure that all exit routes from any floor within the building are clearly indicated as required by the configuration of staircases serving the building.

(vii) One actuating point and one audio warning device to be located at each hose reel point. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation.

(viii) Minimum of one, additional to be provided according to the complexity of the building.

(ix) To be provided in areas not covered by automatic fixed installations.

(x) There shall be sufficient hydrants and hose reels to ensure that every part of the building can be reached by a length of not more than 30 m of Fire Services hose or hose reel tubing.

(xi) As required by the Code of Practice for Means of Access for Firefighting and Rescue.

(xii) As required by occupancy.

(xiii) Required where:

(a) natural venting of staircase is not provided;

(b) the aggregate area of openable windows of the rooms/units of the building does not exceed 6.25% of the floor area of those rooms/units, calculated on a floor by floor basis;

(c) the cubical extent of the building exceeds 28,000 cubic metres; and

(d) the designed fire load of the building is likely to exceed 1,135 MJ/square metre.

The number of pressurized staircases to be provided shall be determined by the table stipulated under the definition of pressurization of staircase in Pt. II provided that the number of pressurized staircases required shall not exceed the total number of staircases required by the Code of Practice for Means of Escape.

(xiv) Required to cover all parts of the buildings including staircases, common corridors and toilets.
(xv) Required for:

(a) atrium of the building, if the compartment of the atrium exceeds 28 000 cubic metres, or any basement level or floor of building forming part of that compartment which exceeds 7 000 cubic metres, or

(b) any fire compartment exceeding 7 000 cubic metres in that building where:

(i) the aggregate area of openable windows of the compartment does not exceed 6.25% of the floor area of that compartment, and

(ii) the designed fire load is likely to exceed 1 135 MJ/square metre.

The requirement of hot smoke test will be stipulated if considered necessary by the Director of Fire Services in the building plans involving compartments:-

(i) with headroom of 12 m or more; or

(ii) with irregular geometrical dimensions or extraordinary large size.

(xvi) When a ventilation/air conditioning control system to a building is provided, it shall stop mechanically induced air movement within a designated fire compartment.

ADDITIONAL REQUIREMENTS

(i) All linings for acoustic and thermal insulation purposes in ductings and concealed locations shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(ii) All linings for acoustic, thermal insulation and decorative purposes within protected means of escape shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(iii) Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

4.16 Composite buildings

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

&

EXTENT FOR:

The fire service installations and equipment required for each of the various usages of a composite building shall conform to the relevant section of this Code.

4.17 Container terminal yards and freight stations

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Automatic actuating devices

(ii) Automatic fixed installation other than water

(iii) Automatic fixed installation using water

(iv) Emergency generator

(v) Emergency lighting

(vi) Exit sign

(vii) Fire alarm system

(viii) Fire control centre

(ix) Fire hydrant/hose reel system

(x) Fixed automatically operated approved appliance

(xi) Portable hand-operated approved appliance

(xii) Pressurization of staircase

(xiii) Ring main systems with fixed pump(s)

(xiv) Special equipment/requirements

(xv) Static or dynamic smoke extraction system
(xvi) Ventilation/Air conditioning control system

EXTENT

(i) As required by that equipment which needs to be automatically actuated.

(ii) To be provided to areas where the use of water is undesirable for the occupancy or trade.

(iii) In all areas including staircases, common corridors and toilets excepting where covered by (ii) above.

(iv) An independently powered generator of sufficient electrical capacity to meet the essential services it is required to provide.

(v) Emergency lighting shall be provided throughout the entire buildings and all exit routes leading to ground level.

(vi) Sufficient directional and exit sign to ensure that all exit routes from any floor within the buildings are clearly indicated as required by the configuration of staircases serving the buildings.

(vii) One actuating point and one audio warning device to be located at each hose reel point. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation.

(viii) Minimum of one, additional to be provided according to the complexity of the building.

(ix) There shall be sufficient hydrants and hose reels to ensure that every part of the buildings can be reached by a length of not more than 30 m of Fire Services hose or hose reel tubing.

(x) As required by occupancy.

(xi) As required by occupancy.

(xii) Required where:

(a) natural venting of staircase is not provided; and

(b) the aggregate area of openable windows of the rooms/units of the building does not exceed 6.25% of the floor area of those rooms/units, calculated on a floor by floor basis. The number of pressurized staircases to be provided shall be determined by the table stipulated under the definition of pressurization of staircases in Part II provided that the number of pressurized staircases required shall not exceed the total number of staircases required by the Code of Practice for Means of Escape.

(xiii) To be provided to cover those areas of such complexes not adequately served by public water mains.

(xiv) As required by Director of Fire Services.

(xv) Required for any fire compartment exceeding 7 000 cubic meters where

(a) the aggregate area of openable windows of the compartment does not exceed 6.25% of the floor area of that compartment, and

(b) the designed fire load of that compartment is likely to exceed 1 135 MJ/m².

The requirement of hot smoke test will be stipulated if considered necessary by the Director of Fire Services in the building plans involving compartments:-

(i) with headroom of 12 m or more; or

(ii) with irregular geometrical dimensions or extraordinary large size.

(xvi) When a ventilation/air conditioning control system to a building is provided, it shall stop mechanically induced air movement within a designated fire compartment.

ADDITIONAL REQUIREMENT

Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

Note: Buildings within such complexes shall conform to the requirements specified for similar premises in accordance with this Code.
4.18 Curtain walled buildings below six storeys in height

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

Normal requirements according to occupancy.

4.19 Curtain walled buildings of and above six storeys in height

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

Normal requirements according to occupancy. Where a sprinkler system is required, this shall be one grade in excess of that normally required for the accepted risk category, except for those buildings constructed to the standard stipulated in the Code of Practice for Fire Resisting Construction (FRC) 1996 or the latest version.

E.g. LH (light hazard) becomes OH I (ordinary hazard Group I); OH III(S) (ordinary hazard Group III special) becomes HH (high hazard).

4.20 Dangerous goods stores

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Automatic actuating devices
(ii) Automatic fixed installation other than water
(iii) Automatic fixed installation using water
(iv) Exit sign
(v) Fire alarm system
(vi) Fixed automatically operated approved appliance
(vii) Fixed foam system
(viii) Gas detection system
(ix) Portable hand-operated approved appliance
(x) Special equipment/requirements

EXTENT

(i) As required by that equipment which needs to be automatically actuated.
(ii) As required by the risk of the dangerous goods and the volume of the store.
(iii) As required by the risk of the dangerous goods and the volume of the store.
(iv) Sufficient directional and exit sign to ensure that all exit routes from any floor within the building are clearly indicated as required by the configuration of staircases serving the building.
(v) One actuating point and one audio warning device to be located at each exit from the store where automatic fixed installation is provided. This actuating point should include facilities for audio warning device initiation.
(vi) As required by the risk of the dangerous goods and the volume of the store.
(vii) As required by the risk.
(viii) As required by the risk.
(ix) As required by the Director of Fire Services.
(x) As required by the Director of Fire Services.

4.21 Domestic buildings—low rise (up to and including three storeys in height)

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

Portable hand-operated approved appliance.

EXTENT

One per floor plus additional for car ports.
ADDITIONAL REQUIREMENTS

(i) All linings for acoustic and thermal insulation purposes in ductings and concealed locations shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(ii) All linings for acoustic, thermal insulation and decorative purposes within protected means of escape shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(iii) Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

4.22 Domestic buildings—low rise (over 3 storeys in height)

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

 (i) Fire alarm system
 (ii) Fire hydrant/hose reel system
 (iii) Portable hand-operated approved appliance

EXTENT

 (i) One actuating point and one audio warning device to be located at each hose reel point. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation.
 (ii) There shall be sufficient hydrants and hose reels on each floor to ensure that every part of each floor can be reached by a length of not more than 30 m of Fire Services hose or hose reel tubing.
 (iii) As required by occupancy.

ADDITIONAL REQUIREMENTS

(i) All linings for acoustic and thermal insulation purposes in ductings and concealed locations shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(ii) All linings for acoustic, thermal insulation and decorative purposes within protected means of escape shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(iii) Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

4.23 Domestic buildings—high rise

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

 (i) Emergency generator
 (ii) Emergency lighting
 (iii) Exit sign
 (iv) Fire alarm system
 (v) Fire hydrant/hose reel system
 (vi) Fireman’s lift
 (vii) Portable hand-operated approved appliance

EXTENT

 (i) Emergency generator of sufficient electrical capacity to supply power for the fire protection and
life safety systems required to be installed in the building.
(ii) Emergency lighting shall be provided to all staircases, passages and public areas including lift lobbies on all floors and refuge areas.
(iii) Sufficient directional and exit sign to ensure that all exit routes from public areas to staircases are clearly indicated.
(iv) One actuating point and one audio warning device to be located at each hose reel point. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation.
(v) There shall be sufficient hydrants and hose reels on each floor to ensure that every part of each floor can be reached by a length of not more than 30 m of Fire Services hose or hose reel tubing.
(vi) As required by the Code of Practice for Means of Access for Firefighting and Rescue.
(vii) As required by occupancy.

ADDITIONAL REQUIREMENTS
(i) All linings for acoustic and thermal insulation purposes in ductings and concealed locations shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.
(ii) All linings for acoustic, thermal insulation and decorative purposes within protected means of escape shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.
(iii) Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

4.24 Consumer electrical equipment: Incorporating transformers, switchgear, generators/alternators requiring separate installations

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:
(i) Automatic actuating devices
(ii) Automatic fixed installation other than water
(iii) Fire detection system
(iv) Portable hand-operated approved appliance

EXTENT
(i) As required by that equipment which needs to be automatically actuated.
(ii) To be provided in oil filled transformer rooms with capacity in excess of 1 500 kVA.
(iii) To be provided in areas not covered by automatic fixed installations and where the portion of the building is required to be provided with fire detection system.
(iv) As required by the Director of Fire Services.

4.25 Explosive production and/or storages

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

Managements shall direct their enquiries to respective licensing authorities, viz. Commissioner of Mines and Commissioner of Police in conjunction with the Building Authority.

4.26 Garages

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:
(i) Automatic actuating devices
(ii) Emergency lighting
(iii) Exit sign
(iv) Fire alarm system
(v) Fire hydrant/hose reel system
(vi) Fireman’s lift
(vii) Portable hand-operated approved appliance
(viii) Sprinkler system
(ix) Ventilation/air conditioning control system

EXTENT

(i) As required by that equipment which needs to be automatically actuated.
(ii) Emergency lighting shall be provided throughout the premises and all exit routes.
(iii) Sufficient directional and exit sign to ensure that all exit routes from the premises within the building are clearly indicated as required by the configuration of staircases serving the building.
(iv) One actuating point and one audio warning device to be located at each hose reel point. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation within the premises.
(v) There shall be sufficient hydrants and hose reels to ensure that every part of the premises can be reached by a length of not more than 30 m of Fire Services hose or hose reel tubing.
(vi) As required by the Code of Practice for Means of Access for Firefighting and Rescue.
(vii) As required by the risk.
(viii) Required for garages with total floor areas exceeding 230 square metres and to cover all parts of the garages including the staircases leading to these garages.
(ix) When a ventilation/air conditioning control system to a building is provided, it shall stop mechanically induced air movement within a designated fire compartment.

ADDITIONAL REQUIREMENT

Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

4.27 Hotels—low rise

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Audio/visual advisory system
(ii) Automatic actuating devices
(iii) Automatic fixed installation other than water
(iv) Emergency generator
(v) Emergency lighting
(vi) Exit sign
(vii) Fire alarm system
(viii) Fire control centre
(ix) Fire detection system
(x) Fire hydrant/hose reel system
(xi) Fireman’s lift
(xii) Portable hand-operated approved appliance
(xiii) Pressurization of staircase
(xiv) Sprinkler system
(xv) Static or dynamic smoke extraction system
(xvi) Ventilation/air conditioning control system

EXTENT

(i) Required for any part or parts of building where the area occupied by any one single occupancy on any one floor exceeds 2,000 square metres AND where the occupants, due to their transient
presence either as shoppers, audience or guests, are exposed to risks to require additional advice through such systems.

(ii) As required by that equipment which requires to be automatically actuated.

(iii) To be provided to areas where the use of water is undesirable for the occupancy or trade.

(iv) An independently powered generator of sufficient electrical capacity to meet the essential services it is required to provide.

(v) Emergency lighting shall be provided throughout the entire building and all exit routes leading to ground level.

(vi) Sufficient directional and exit sign to ensure that all exit routes from any floor within the building are clearly indicated as required by the configuration of staircases serving the building.

(vii) One actuating point and one audio warning device to be located at each hose reel point. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation.

(viii) Minimum of one, additional to be provided according to the complexity of the building.

(ix) (a) To be provided in areas not covered by automatic fixed installations; and

(b) a smoke detection system to be provided for the entire floor excluding toilets, bathrooms and staircases which are covered by sprinkler system, if any part of that floor is used for sleeping accommodation. Heat detection system would be acceptable in electrical/mechanical rooms and kitchens.

(x) There shall be sufficient hydrants and hose reels to ensure that every part of the building can be reached by a length of not more than 30 m of Fire Services hose or hose reel tubing.

(xi) As required by the Code of Practice for Means of Access for Firefighting and Rescue.

(xii) As required by occupancy.

(xiii) Required where:

(a) natural venting of staircase is not provided; and

(b) the aggregate area of openable windows of the rooms/units of the building does not exceed 6.25% of the floor area of those rooms/units, calculated on a floor by floor basis. The number of pressurized staircases to be provided shall be determined by the table stipulated under the definition of pressurization of staircase in Pt. II provided that the number of pressurized staircases required shall not exceed the total number of staircases required by the Code of Practice for Means of Escape.

(xiv) In all parts of the hotels including staircases, common corridors, toilets and bathrooms.

(xv) Required for:

(a) all internal means of escape serving all guest rooms irrespective of the cubical extent of the building or the volume of the fire compartment on any floor. “Internal means of escape” for this purpose, means the route leading from the outside of all guest rooms to a pressurized or naturally ventilated staircase; a protected lobby or open air, unless the route itself is provided with openable windows communicating to the open air and the aggregate area of such windows exceeds 6.25% of the floor area of that route, or

(b) atrium of the hotel building, if the compartment of the atrium exceeds 28 000 cubic metres, or any basement level or floor of building forming part of that compartment which exceeds 7 000 cubic metres, or

(c) any fire compartment exceeding 7 000 cubic metres in that hotel building where:

(i) the aggregate area of openable windows of the compartment does not exceed 6.25% of the floor area of that compartment, and

(ii) the designed fire load is likely to exceed 1 135 MJ/square metre.

The requirement of hot smoke test will be stipulated if considered necessary by the Director of Fire Services in the building plans involving compartments:-

(i) with headroom of 12 m or more; or

(ii) with irregular geometrical dimensions or extraordinary large size.

(xvi) When a ventilation/air conditioning control system to a building is provided, it shall stop mechanically induced air movement within a designated fire compartment.
ADDITIONAL REQUIREMENTS

(i) All linings for acoustic and thermal insulation purposes in ductings and concealed locations shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(ii) All linings for acoustic, thermal insulation and decorative purposes within protected means of escape shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(iii) Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

4.28 Hotels—high rise

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Audio/visual advisory system
(ii) Automatic actuating devices
(iii) Automatic fixed installation other than water
(iv) Emergency generator
(v) Emergency lighting
(vi) Exit sign
(vii) Fire alarm system
(viii) Fire control centre
(ix) Fire detection system
(x) Fire hydrant/hose reel system
(xi) Fireman’s lift
(xii) Portable hand-operated approved appliance
(xiii) Pressurization of staircase
(xiv) Sprinkler system
(xv) Static or dynamic smoke extraction system
(xvi) Ventilation/air conditioning control system

EXTENT

(i) Required for any part or parts of building where the area occupied by any one single occupancy on any one floor exceeds 2,000 square metres AND where the occupants, due to their transient presence either as shoppers, audience or guests, are exposed to risks to require additional advice through such systems.

(ii) As required by that equipment which requires to be automatically actuated.

(iii) To be provided to areas where the use of water is undesirable for the occupancy or trade.

(iv) An independently powered generator of sufficient electrical capacity to meet the essential services it is required to provide.

(v) Emergency lighting shall be provided throughout the entire building and all exit routes leading to ground level.

(vi) Sufficient directional and exit sign to ensure that all exit routes from any floor within the building are clearly indicated as required by the configuration of staircases serving the building.

(vii) One actuating point and one audio warning device to be located at each hose reel point. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation.

(viii) Minimum of one, additional to be provided according to the complexity of the building.

(ix) (a) To be provided in areas not covered by automatic fixed installations; and

(b) a smoke detection system to be provided for the entire floor excluding toilets, bathrooms
and staircases which are covered by sprinkler system, if any part of that floor is used for sleeping accommodation. Heat detection system would be acceptable in electrical/mechanical rooms and kitchens.

(x) There shall be sufficient hydrants and hose reels to ensure that every part of the building can be reached by a length of not more than 30 m of Fire Services hose or hose reel tubing.

(xi) As required by the Code of Practice for Means of Access for Firefighting and Rescue.

(xii) As required by occupancy.

(xiii) Required where:

(a) natural venting of staircase is not provided; and

(b) the aggregate area of openable windows of the rooms/units of the building does not exceed 6.25% of the floor area of those rooms/units, calculated on a floor by floor basis. The number of pressurized staircases to be provided shall be determined by the table stipulated under the definition of pressurization of staircase in Pt. II provided that the number of pressurized staircases required shall not exceed the total number of staircases required by the Code of Practice for Means of Escape.

(xiv) In all parts of the hotels including staircases, common corridors, toilets and bathrooms.

(xv) Required for:

(a) all internal means of escape serving all guest rooms irrespective of the cubical extent of the building or the volume of the fire compartment on any floor. “Internal means of escape” for this purpose, means the route leading from the outside of all guest rooms to a pressurized or naturally ventilated staircase; a protected lobby or open air, unless the route itself is provided with openable windows communicating to the open air and the aggregate area of such windows exceeds 6.25% of the floor area of that route, or

(b) atrium of the hotel building, if the compartment of the atrium exceeds 28 000 cubic metres; or any basement level or floor of building forming part of that compartment which exceeds 7 000 cubic metres, or

(c) any fire compartment exceeding 7 000 cubic metres in that hotel building where:

(i) the aggregate area of openable windows of the compartment does not exceed 6.25% of the floor area of that compartment, and

(ii) the designed fire load is likely to exceed 1 135 MJ/square metre.

The requirement of hot smoke test will be stipulated if considered necessary by the Director of Fire Services in the building plans involving compartments:

(i) with headroom of 12 m or more; or

(ii) with irregular geometrical dimensions or extraordinary large size.

(xvi) When a ventilation/air conditioning control system to a building is provided, it shall stop mechanically induced air movement within a designated fire compartment.

ADDITIONAL REQUIREMENTS

(i) All linings for acoustic and thermal insulation purposes in ductings and concealed locations shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(ii) All linings for acoustic, thermal insulation and decorative purposes within protected means of escape shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(iii) Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

4.29 Industrial/godown buildings—low rise

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Automatic actuating devices

(ii) Automatic fixed installation other than water
(iii) Emergency generator
(iv) Emergency lighting
(v) Exit sign
(vi) Fire alarm system
(vii) Fire control centre
(viii) Fire detection system
(ix) Fire hydrant/hose reel system
(x) Fireman’s lift or firefighting and rescue stairway
(xi) Portable hand-operated approved appliance
(xii) Sprinkler system
(xiii) Static or dynamic smoke extraction system
(xiv) Ventilation/air conditioning control system

EXTENT

(i) As required by that equipment which needs to be automatically actuated.
(ii) To be provided to areas where the use of water is undesirable for the occupancy or trade.
(iii) An independently powered generator of sufficient electrical capacity to meet the essential services it is required to provide.
(iv) Emergency lighting shall be provided throughout the entire building and all exit routes leading to ground level.
(v) Sufficient directional and exit sign to ensure that all exit routes from any floor within the building are clearly indicated as required by the configuration of staircases serving the building.
(vi) One actuating point and one audio warning device to be located at each hose reel point. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation.
(vii) Minimum of one, additional to be provided according to the complexity of the building.
(viii) To be provided in areas not covered by automatic fixed installations.
(ix) There shall be sufficient hydrants and hose reels to ensure that every part of the building can be reached by a length of not more than 30 m of Fire Services hose or hose reel tubing.
(x) As required by the Code of Practice for Means of Access for Firefighting and Rescue.
(xi) As required by occupancy.
(xii) Required for buildings with total floor areas exceeding 230 square metres and to cover all parts of the buildings including staircases, common corridors and toilets.
(xiii) Required for any fire compartment exceeding 7 000 cubic metres where:

(a) the aggregate area of openable windows of the compartment does not exceed 6.25% of the floor area of that compartment, and
(b) the designed fire load is likely to exceed 1 135 MJ/square metre.

The requirement of hot smoke test will be stipulated if considered necessary by the Director of Fire Services in the building plans involving compartments:

(i) with headroom of 12 m or more; or
(ii) with irregular geometrical dimensions or extraordinary large size.

(xiv) When a ventilation/air conditioning control system to a building is provided, it shall stop mechanically induced air movement within a designated fire compartment.

ADDITIONAL REQUIREMENT

Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.
4.30 Industrial/godown buildings—high rise

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Automatic actuating devices
(ii) Automatic fixed installation other than water
(iii) Emergency generator
(iv) Emergency lighting
(v) Exit sign
(vi) Fire alarm system
(vii) Fire control centre
(viii) Fire detection system
(ix) Fire hydrant/hose reel system
(x) Firefighting and rescue stairway
(xi) Portable hand-operated approved appliance
(xii) Pressurization of staircase
(xiii) Sprinkler system
(xiv) Static or dynamic smoke extraction system
(xv) Ventilation/air conditioning control system

EXTENT

(i) As required by that equipment which needs to be automatically actuated.
(ii) To be provided to areas where the use of water is undesirable for the occupancy or trade.
(iii) An independently powered generator of sufficient electrical capacity to meet the essential services it is required to provide.
(iv) Emergency lighting shall be provided throughout the entire building and all exit routes leading to ground level.
(v) Sufficient directional and exit sign to ensure that all exit routes from any floor within the building are clearly indicated as required by the configuration of staircases serving the building.
(vi) One actuating point and one audio warning device to be located at each hose reel point. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation.
(vii) Minimum of one, additional to be provided according to the complexity of the building.
(viii) To be provided in areas not covered by automatic fixed installations.
(ix) There shall be sufficient hydrants and hose reels to ensure that every part of the building can be reached by a length of not more than 30 m of Fire Services hose or hose reel tubing.
(x) As required by the Code of Practice for Means of Access for Firefighting and Rescue.
(xi) As required by occupancy.
(xii) Required where:

(a) natural venting of staircase is not provided;
(b) the aggregate area of openable windows of the rooms/units of the building does not exceed 6.25% of the floor area of those rooms/units, calculated on a floor by floor basis;
(c) the cubical extent of the building exceeds 28 000 cubic metres; and
(d) the designed fire load of the building is likely to exceed 1 135 MJ/square metre.

The number of pressurized staircases to be provided shall be determined by the table stipulated under the definition of pressurization of staircase in Pt. II provided that the number of pressurized staircases required shall not exceed the total number of staircases required by the Code of Practice for Means of Escape.

(xiii) In all parts of the buildings including staircases, common corridors and toilets.
(xiv) Required for any fire compartment exceeding 7 000 cubic metres where:
(a) the aggregate area of openable windows of the compartment does not exceed 6.25% of the floor area of that compartment, and

(b) the designed fire load is likely to exceed 1 135 MJ/square metre.

The requirement of hot smoke test will be stipulated if considered necessary by the Director of Fire Services in the building plans involving compartments:-

(i) with headroom of 12 m or more; or

(ii) with irregular geometrical dimensions or extraordinary large size.

(xv) When a ventilation/air conditioning control system to a building is provided, it shall stop mechanically induced air movement within a designated fire compartment.

ADDITIONAL REQUIREMENT

Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

4.31 Institutional buildings—low rise

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Audio/visual advisory system

(ii) Automatic actuating devices

(iii) Automatic fixed installation other than water

(iv) Emergency generator

(v) Emergency lighting

(vi) Exit sign

(vii) Fire alarm system

(viii) Fire detection system

(ix) Fire hydrant/hose reel system

(x) Fireman’s lift

(xi) Portable hand-operated approved appliance

(xii) Sprinkler system

(xiii) Ventilation/air conditioning control system

EXTENT

(i) Required for any part or parts of building where the area occupied for institutional purposes on any one floor exceeds 2 000 square metres AND where the occupants, due to their transient presence either as guests or visitors, are exposed to risks to require additional advice through such systems.

(ii) To be provided to areas where the use of water is undesirable for the occupancy or trade.

(iv) To be provided to hospitals, prisons or as required by the risks. The independently powered generator shall have sufficient electrical capacity to meet the essential services.

(v) Emergency lighting shall be provided throughout the entire building and all exit routes leading to ground level.

(vi) Sufficient directional and exit sign to ensure that all exit routes from any floor within the building are clearly indicated as required by the configuration of staircases serving the building.

(vii) One actuating point and one audio warning device to be located at each hose reel point. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation.

(viii) (a) To be provided in areas not covered by automatic fixed installations; and

(b) a smoke detection system to be provided for the entire floor excluding toilets, bathrooms and staircases which are covered by sprinkler system, if any part of that floor is used for sleeping accommodation. Heat detection system would be acceptable in electrical/mechanical rooms and kitchens.
(ix) There shall be sufficient hydrants and hose reels to ensure that every part of the building can be reached by a length of not more than 30 m of Fire Services hose or hose reel tubing.

(x) As required by the Code of Practice for Means of Access for Firefighting and Rescue.

(xi) As required by occupancy.

(xii) Required for all parts of buildings including staircases, common corridors, toilets and bathrooms with total floor area exceeding 230 m².

(xiii) When a ventilation/air conditioning control system to a building is provided, it shall stop mechanically induced air movement within a designated fire compartment.

ADDITIONAL REQUIREMENTS

(i) All linings for acoustic and thermal insulation purposes in ductings and concealed locations shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(ii) All linings for acoustic, thermal insulation and decorative purposes within protected means of escape shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(iii) Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

(iv) Protection for hospital lifts which are designated for evacuation purpose shall satisfy every condition for a Fireman’s lift with the exception of the internal floor area of car, and the minimum rated load factors.

4.32 Institutional buildings—high rise

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

 (i) Audio/visual advisory system
 (ii) Automatic actuating devices
 (iii) Automatic fixed installation other than water
 (iv) Emergency generator
 (v) Emergency lighting
 (vi) Exit sign
 (vii) Fire alarm system
 (viii) Fire control centre
 (ix) Fire detection system
 (x) Fire hydrant/hose reel system
 (xi) Fireman’s lift
 (xii) Portable hand-operated approved appliance
 (xiii) Pressurization of staircase
 (xiv) Sprinkler system
 (xv) Ventilation/air conditioning control system

EXTENT

 (i) Required for any part or parts of building where the area occupied for institutional purposes on any one floor exceeds 2 000 square metres AND where the occupants either as guests or visitors, due to their transient presence, are exposed to risks to require additional advice through such systems.

 (ii) As required by that equipment which needs to be automatically actuated.

 (iii) To be provided to areas where the use of water is undesirable for the occupancy or trade.

 (iv) An independently powered generator of sufficient electrical capacity to meet the essential services it is required to provide.
(v) Emergency lighting shall be provided throughout the entire building and all exit routes leading to ground level.

(vi) Sufficient directional and exit sign to ensure that all exit routes from any floor within the building are clearly indicated as required by the configuration of staircases serving the building.

(vii) One actuating point and one audio warning device to be located at each hose reel point. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation.

(viii) Minimum of one, additional to be provided according to the complexity of the building.

(ix) (a) To be provided in areas not covered by automatic fixed installations; and

(b) a smoke detection system to be provided for the entire floor excluding toilets, bathrooms and staircases which are covered by sprinkler system, if any part of that floor is used for sleeping accommodation. Heat detection system would be acceptable in electrical/mechanical rooms and kitchens.

(x) There shall be sufficient hydrants and hose reels to ensure that every part of the building can be reached by a length of not more than 30 m of Fire Services hose or hose reel tubing.

(xi) As required by the Code of Practice for Means of Access for Firefighting and Rescue.

(xii) As required by occupancy.

(xiii) Required for hospitals where:

(a) natural venting of staircase is not provided; and

(b) the aggregate area of openable windows of the rooms/units of the building does not exceed 6.25% of the floor area of those rooms/units, calculated on a floor by floor basis. The number of pressurized staircases to be provided shall be determined by the table stipulated under the definition of pressurization of staircase in Pt. II provided that the number of pressurized staircases required shall not exceed the total number of staircases required by the Code of Practice for Means of Escape.

(xiv) Required for all parts of buildings including staircases, common corridors, toilets and bathrooms.

(xv) When a ventilation/air conditioning control system to a building is provided, it shall stop mechanically induced air movement within a designated fire compartment.

ADDITIONAL REQUIREMENTS

(i) All linings for acoustic and thermal insulation purposes in ductings and concealed locations shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(ii) All linings for acoustic, thermal insulation and decorative purposes within protected means of escape shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.

(iii) Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

(iv) Protection for hospital lifts which are designated for evacuation purpose shall satisfy every condition for a Fireman’s lift with the exception of the internal floor area of car, and the minimum rated load factors.

4.33 Kitchens (other than kitchens in domestic premises)

REQUESTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

Kitchens shall normally be required to incorporate the fire protection and life safety systems in the building in which they are located with the addition of any special equipment/requirements as may be required by the Director of Fire Services.
4.34 Lift motor rooms

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Fire detection system.
(ii) Portable hand-operated approved appliance.

EXTENT

(i) To be provided in all lift motor rooms where the portion of building is required to be provided with fire detection system.
(ii) As required by occupancy.

4.35 Mechanical plant rooms (Group I)

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

Note: Plant Rooms to exclude open gas fired appliances

(i) Automatic actuating devices
(ii) Fire detection system
(iii) Gas detection system
(iv) Gas extraction system
(v) Portable hand-operated approved appliance
(vi) Ventilation/air conditioning control system

EXTENT

(i) As required by that equipment which needs to be automatically actuated.
(ii) To be provided in areas not covered by automatic fixed installations and where the portion of the building is required to be provided with fire detection system.
(iii) To be provided where flammable vapours may be generated.
(iv) Approved type for the part of building where flammable vapours may be generated, and to reduce the concentration below its lower explosive limit.
(v) As required by the risk.
(vi) When a ventilation/air conditioning control system to a building is provided, it shall stop mechanically induced air movement within a designated fire compartment.

ADDITIONAL REQUIREMENT

Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

4.36 Mechanical plant rooms (Group II)

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

Note: Plant Rooms to exclude open gas fired appliances

(i) Automatic actuating devices
(ii) Automatic fixed installation other than water
(iii) Emergency generator
(iv) Emergency lighting
(v) Exit sign
(vi) Fire detection system
(vii) Fixed automatically operated approved appliance
(viii) Gas detection system
(ix) Gas extraction system
(x) Portable hand-operated approved appliance
(xi) Ventilation/air conditioning control system
EXTENT

(i) As required by that equipment which needs to be automatically actuated.
(ii) To be provided to areas where the use of water is undesirable for the occupancy or trade.
(iii) An independently powered generator of sufficient electrical capacity to meet the essential services it is required to provide.
(iv) Emergency lighting shall be provided throughout the entire building and all exit routes.
(v) Sufficient directional and exit sign to ensure that all exit routes from any floor within the building are clearly indicated as required by the configuration of staircases serving the building.
(vi) To be provided in areas not covered by automatic fixed installations.
(vii) As required by the risk.
(viii) To be provided where flammable vapours may be generated.
(ix) Approved type for the part of building where flammable vapours may be generated, and to reduce the concentration below its lower explosive limit.
(x) As required by the risk.
(xi) When a ventilation/air conditioning control system to a building is provided, it shall stop mechanically induced air movement within a designated fire compartment.

ADDITIONAL REQUIREMENT

Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

4.37 Passenger terminals/stations

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

Such terminals/stations to be the subject of individual consideration by the Director of Fire Services, taking into account their size and complexity. Requirements will be based generally on the various usages of the terminals/stations in accordance with the relevant sections of this Code for similar usages, with additional requirements for other areas as considered necessary e.g. passenger movement areas.

4.38 Petro-chemical complexes

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Automatic actuating devices
(ii) Automatic fixed installation other than water
(iii) Automatic fixed installation using water
(iv) Dust detection system
(v) Emergency generator
(vi) Emergency lighting
(vii) Fire alarm system
(viii) Fire control centre
(ix) Fire detection system
(x) Fixed automatically operated approved appliance
(xi) Fixed foam system
(xii) Gas detection system
(xiii) Gas extraction system
(xiv) Portable hand-operated approved appliance
(xv) Ring main system with fixed pump(s)
(xvi) Special equipment/requirements
(xvii) Ventilation/air conditioning control system
EXTENT

(i) As required by that equipment which needs to be automatically actuated.
(ii) To be provided to areas where the use of water is undesirable for the risk.
(iii) In all areas including staircases, common corridors and toilets excepting where covered by above.
(iv) To be provided in all areas where there is a potential dust explosion hazard.
(v) An independently powered generator of sufficient electrical capacity to meet the essential services it is required to provide.
(vi) Emergency lighting shall be provided to all buildings within the complex and in addition, such lighting shall also be provided to ensure adequate external illumination to permit safe evacuation to the outside of the site boundary.
(vii) One actuating point and one audio warning device to be located at each hose reel point within the buildings. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation, and in addition, one actuating point and one audio/visual warning device to be provided at each hydrant outlet on the ring main system.
(viii) Minimum of one, additional to be provided according to the layout of the complex.
(ix) To be provided in areas not covered by automatic fixed installations.
(x) As required by the risk.
(xi) As required by the risk.
(xii) To be provided in all areas of risk.
(xiii) Approved type for the part of building where flammable vapours may be generated, and to reduce the concentration below its lower explosive limit.
(xiv) As required by the risk.
(xv) To be provided to cover those areas of such complexes not adequately served by public water mains.
(xvi) As required by the Director of Fire Services.
(xvii) When a ventilation/air conditioning control system to a building is provided, it shall stop mechanically induced air movement within a designated fire compartment.

Note: Buildings within such complexes shall conform to the requirements specified for similar premises in accordance with this Code.

4.39 Railway marshalling yards

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Automatic fixed installation other than water
(ii) Automatic fixed installation using water
(iii) Emergency generator
(iv) Emergency lighting
(v) Fire alarm system
(vi) Fire Control Centre
(vii) Fire hydrant/hose reel system
(viii) Portable hand-operated approved appliance
(ix) Ring main system with fixed pump(s)
(x) Special equipment/requirements
(xi) Static or dynamic smoke extraction system.

EXTENT

(i) To be provided to areas where the use of water is undesirable for the risk.
(ii) In all areas including staircases, common corridors and toilets excepting where covered by (i) above.
(iii) An independently powered generator of sufficient electrical capacity to meet the essential services it is required to provide.

(iv) Emergency lighting shall be provided to all buildings within the yard, and in addition, such lighting shall also be provided to ensure adequate external illumination to permit safe evacuation to the outside of the site boundary.

(v) One actuating point and one audio warning device to be located at each hydrant point on the ring main systems. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation.

(vi) Minimum of one, additional to be provided according to the layout of the yard.

(vii) There shall be sufficient hydrants and hose reels to ensure that every part of the building can be reached by a length of not more than 30 m of Fire Services hose or hose reel tubing.

(viii) As required by occupancy.

(ix) To be provided to cover those areas of the yard not adequately served by public water mains.

(x) As required by the Director of Fire Services.

(xi) Required for any fire compartment exceeding 7,000 cubic metres where

(a) the aggregate area of openable windows of the compartment does not exceed 6.25% of the floor area of that compartment, and

(b) the designed fire load of that compartment is likely to exceed 1,135 MJ/square metre.

The requirement of hot smoke test will be stipulated if considered necessary by the Director of Fire Services in the building plans involving compartments:

(i) with headroom of 12 m or more; or

(ii) with irregular geometrical dimensions or extraordinary large size.

Note: Buildings within the yard shall conform to the requirements specified for similar premises in accordance with this Code.

4.40 Refuge floors

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

&

EXTENT FOR:

(i) The fire service installations and equipment that are required to be provided in the building in accordance with relevant sections of this Code shall also be extended to the Refuge Floor(s) as appropriate; and

(ii) an external drencher system with an independent water supply shall be provided to protect all external wall openings. The system shall be automatically operated by a quick opening valve or deluge valve which is operated by a system of approved heat detectors or sprinklers installed in the same areas as the drencher system, together with manual control.

(iii) Sprinkler or drencher system is not required on open roof even though it is designed as Refuge Floor.

4.41 Road tunnels

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Automatic fixed installation other than water

(ii) Closed circuit television system

(iii) Dynamic smoke extraction system

(iv) Emergency generator

(v) Emergency lighting

(vi) Emergency power points

(vii) Exit sign

(viii) Fire alarm system
(ix) Fire control centre
(x) Fire hydrant/hose reel system
(xi) Fireman’s communication system(s)
(xii) Fixed foam system
(xiii) Gas detection system(s)
(xiv) Pedestrian cross over facilities
(xv) Portable hand-operated approved appliance

EXTENT

(i) To be provided to areas where the use of water is undesirable for the risk.
(ii) To be provided to enable clear visual observation throughout the length of the tunnel.
(iii) To be provided where the tunnel exceeds 230 m and may be incorporated into the ventilating system of the tunnel.
(iv) An independently powered generator of sufficient electrical capacity to meet the essential services it is required to provide.
(v) Emergency lighting shall be provided throughout the entire tunnel.
(vi) To be provided at 100 m intervals on both sides of the tunnel.
(vii) To be provided to indicate the locations of pedestrian cross over facilities.
(viii) One actuating point and one visual warning device to be located at each hose reel point. This actuating point should include facilities for fire pump start and audio visual warning device initiation within the tunnel control centre.
(ix) A fire control centre to be provided. This may be part of the tunnel control centre.
(x) There shall be sufficient hydrants and hose reels to ensure that every part of the tunnel can be reached by a length of not more than 30 m of Fire Services hose or hose reel tubing.
(xi) As required by the Director of Fire Services.
(xii) To be provided for nadir sump at middle portion of tunnel, especially in an immersed tunnel.
(xiii) Gas detection system(s) to include carbon monoxide indication and alarm.
(xiv) Cross over facilities to be provided in twin tube tunnels. In respect of single tube tunnel, a small pedestrian tunnel is to be provided for escaping purposes.
(xv) As required by the risk.

4.42 Shipyards

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

(i) Automatic actuating devices
(ii) Emergency generator
(iii) Emergency lighting
(iv) Fire alarm system
(v) Fire control centre
(vi) Portable hand-operated approved appliance
(vii) Ring main system with fixed pump(s)
(viii) Special equipment/requirements

EXTENT

(i) As required by that equipment which needs to be automatically actuated.
(ii) An independently powered generator of sufficient electrical capacity to meet the essential services it is required to provide.
(iii) Emergency lighting shall be provided to all buildings within the yard, and in addition, such lighting shall also be provided to ensure adequate external illumination to permit safe evacuation to the outside of the site boundary.
(iv) One actuating point and one audio warning device to be located at each hydrant point on the ring main systems. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation.

(v) Minimum of one, additional to be provided according to the layout of the yard.

(vi) As required by occupancy.

(vii) To be provided to cover those areas of the yard not adequately served by public water mains.

(viii) As required by the Director of Fire Services.

Note: Buildings within the yard shall conform to the requirements specified for similar premises in accordance with this Code.

ADDITIONAL REQUIREMENT

Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

4.43 Substation/switchgear buildings

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

1. Automatic actuating devices
2. Automatic fixed installation other than water
3. Automatic fixed installation using water
4. Emergency generator
5. Emergency lighting
6. Exit sign
7. Fire alarm system
8. Fire control centre
9. Fire detection system
10. Fire hydrant/hose reel system
11. Fireman’s lift or firefighting and rescue stairway
12. Portable hand-operated approved appliance
13. Ventilation/air conditioning control system

EXTENT

1. As required by that equipment which needs to be automatically actuated.
2. To be provided to areas where the use of water is undesirable for the occupancy or trade.
3. As required by the risk.
4. An independently powered generator of sufficient electrical capacity to meet the essential services it is required to provide.
5. Emergency lighting shall be provided throughout the entire building and all exit routes leading to ground level.
6. Sufficient directional and exit sign to ensure that all exit routes from any floor within the building are clearly indicated as required by the configuration of staircases serving the building.
7. One actuating point and one audio warning device to be located at each hose reel point. Visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access. This actuating point should include facilities for fire pump start and audio/visual warning device initiation.
8. Minimum of one, additional to be provided according to the complexity of the building.
9. To be provided in areas not covered by automatic fixed installations.
10. As required by the risks, there shall be sufficient hydrants and hose reels to ensure that every part of the building can be reached by a length of not more than 30 m of Fire Services hose or hose reel tubing.
(xi) As required by the Code of Practice for Means of Access for Firefighting and Rescue.
(xii) As required by occupancy.
(xiii) When a Ventilation/air conditioning control system to a building is provided, it shall stop mechanically induced air movement within a designated fire compartment.

ADDITIONAL REQUIREMENT

Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.

4.44 Telephone distribution equipment, computer installation and similar installations

REQUIREMENTS—SYSTEMS/INSTALLATIONS/EQUIPMENT FOR:

- (i) Automatic actuating devices
- (ii) Automatic fixed installation other than water
- (iii) Automatic fixed installation using water
- (iv) Emergency lighting
- (v) Exit sign
- (vi) Fire alarm system
- (vii) Fire detection system
- (viii) Fixed automatically operated approved appliance
- (ix) Portable hand-operated approved appliance
- (x) Ventilation/air conditioning control system

EXTENT

- (i) As required by that equipment which needs to be automatically actuated.
- (ii) To be provided if not otherwise protected by automatic fixed installation using water.
- (iii) To be provided if not otherwise protected by automatic fixed installation other than water.
- (iv) Emergency lighting shall be provided throughout the entire building and all exit routes leading to ground level.
- (v) Sufficient directional and exit sign to ensure that all exit routes from the premises within the buildings are clearly indicated as required by the configuration of staircases serving the building.
- (vi) As required by the risk. If required, visual alarm signals shall be provided where necessary in accordance with current Design Manual: Barrier Free Access.
- (vii) To be provided in areas not covered by automatic fixed installations.
- (viii) As required by the equipment at risk.
- (ix) As required by the risk.
- (x) When a ventilation/air conditioning control system to a building is provided, it shall stop mechanically induced air movement within a designated fire compartment.

ADDITIONAL REQUIREMENTS

- (i) All linings for acoustic and thermal insulation purposes in ductings and concealed locations shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.
- (ii) All linings for acoustic, thermal insulation and decorative purposes within protected means of escape shall be of Class 1 or 2 Rate of Surface Spread of Flame as per British Standard 476: Part 7 or its international equivalent, or be brought up to that standard by use of an approved fire retardant product.
- (iii) Any intended storage or use of dangerous goods as defined in Chapter 295 of the Laws of Hong Kong should be notified to the Director of Fire Services.
PART V

SPECIFICATION

5.1 Audio/visual advisory system
5.2 Automatic actuating devices
5.3 Automatic fixed installation other than water
5.4 Automatic fixed installation using water
5.5 Deluge system
5.6 Drencher system
5.7 Dust detection system
5.8 Emergency generator
5.9 Emergency lighting
5.10 Exit sign
5.11 Fire alarm system
5.12 Fire control centre
5.13 Fire detection system
5.14 Fire hydrant/hose reel system
5.15 Fire resisting cable for fire service installations
5.16 Fireman’s lift and firefighting and rescue stairway
5.17 Fixed automatically operated approved appliance
5.18 Fixed foam system
5.19 Gas detection system
5.20 Portable hand-operated approved appliance
5.21 Pressurization of staircase
5.22 Ring main system with fixed pump(s)
5.23 Smoke extraction system
5.24 Sprinkler system
5.25 Street fire hydrant system
5.26 Supply tank
5.27 Ventilation/air conditioning control system
5.28 Water mist system
5.29 Water spray system
5.30 Water supply
5.1 Audio/visual advisory system

SPECIFICATION

Fire alarm bells, klaxons, sirens etc. which are an integral part of an automatic or a manual fire alarm system are not included in this section.

AUDIO

A system of records/signals either verbal or musical or direct transmission over a Public Address System to advise staff and other occupants of emergency conditions and the action to be followed.

In special occupancy premises e.g. hospitals, cinemas, an agreed sound signal may be broadcast to give early warning to staff of emergency conditions which may or may not necessitate action by them at that time.

The power supply to the sound system should be from essential circuits.

VISUAL

A system of coloured and flashing lights, which may be incorporated to the exit signs and directional signs as required under 5.10 and supplemented by low-level directional signs to indicate:

(a) the floor/floors to be evacuated by operating the lights on that floor/those floors in flashing mode,
(b) the evacuation routes by following the low-level directional signs.

Low level directional signs shall be installed with the lower edges not higher than 200 mm from the finished floor level.

Low level directional signs shall be of self-luminous types and conform to British Standard 5499: Part 2 or, alternatively, shall be of photoluminous types and conform to DIN 67510 Part 4 or equivalent.

5.2 Automatic actuating devices

SPECIFICATION

Components under this section will include fire stop doors, fire dampers, fire curtains and other means of providing compartmentation/fire separation automatically in the event of fire. Automatic fire detection and fire suppression systems are not included in this section.

They shall be constructed and installed in accordance with the standards acceptable to the Director of Fire Services and/or Director of Buildings as appropriate.

Pursuant to the Code of Practice for Fire Resisting Construction issued by the Building Authority, fire shutter shall be constructed, installed and assembled to the satisfaction of the Building Authority. The operation of fire shutters shall be designed, installed, tested and maintained to the satisfaction of the Director of Fire Services.

Unless otherwise agreed by the Director of Fire Services, all fire shutters shall be provided with smoke detector(s) and manual control device(s) on both sides of wall openings for automatic and manual operation respectively. The detectors shall be installed as far as practicable to the provisions of the Rules of the Loss Prevention Council for Automatic Fire Detection and Alarm Installations for the Protection of Property and BS 5839 : Part 1 : 1988.

The descending time of a vertical shutter shall be within 15 to 60 seconds for closing/opening in excess of 2.5 m in height. For openings of height within 2.5 m, the descending time shall not be faster than 8 seconds and that the bottom rail of the shutter shall reach the mid-height in not less than half the total descending time of the shutter.

For opening which is protected by horizontal travelling fire shutter, the shutter shall be able to close off the opening within 60 seconds and under no circumstances its travelling speed shall be greater than 0.2 m/s or the safety limit specified by the equipment manufacturer. If the opening is of such a size that the travelling time of the horizontal fire shutter is longer than 60 seconds, approval shall be
obtained from the Director of Fire Services. Under such circumstances, other means for automatic actuation of the horizontal fire shutter at early stage of fire may be required.

5.3 Automatic fixed installation other than water

SPECIFICATION

Carbon dioxide, FM200 or similar extinguishing system, shall be installed in accordance with standards acceptable to the Director of Fire Services.

When installed the system may be combined manual/automatic with or without remote operation.

Such systems in their simplest form consist of one or more storage containers with discharge valves, detection heads, piping and discharge nozzles.

If the system is intended for total flooding of the premises/compartment, then automatic actuating devices (Section 5.2) may be necessary, in addition, to ensure complete compartmentation.

5.4 Automatic fixed installation using water

These may include:
- Deluge system
- Drencher system
- Sprinkler system
- Water mist system
- Water spray system

Specifications for the above are in the respective sections.

5.5 Deluge system

SPECIFICATION

A deluge system may be required in a risk area where fire may be expected to spread quicker than the progressive operation of normal sprinkler heads.

The design of such system will be the subject of consultation with the Fire Services Department.

5.6 Drencher system

SPECIFICATION

General

(i) Such system shall be installed in accordance with standards acceptable to the Director of Fire Services.

(ii) Drencher system shall be installed on all refuge floors to cover all external wall openings. The water flow rate should be maintained not less than 10 litres per minute per square metre of the external wall openings.

(iii) A deluge valve set shall be installed close to the inlet for the drencher system. Manual operating device(s) with operation instruction displayed nearby shall be provided on refuge floor at location(s) acceptable to the Director of Fire Services.

(iv) Independent water tank shall be provided for the drencher system of each building block with the capacity to operate for at least 30 minutes. If there are two refuge floors in a building block, the capacity of the water tank shall be calculated in accordance with the refuge floor with the larger external wall opening area. For a building block with 3 or more refuge floors, the water tank capacity will be considered on a case by case basis.

5.7 Dust detection system

SPECIFICATION

Very few types of premises will require such a system and the type will depend on the industry/trade/usage of the premises.
Each required system shall be designed in consultation with and to the approval of the Fire Services Department.

Each system shall:

(a) be automatic in action;
(b) close down the affected process;
(c) operate pressure relief vent (if appropriate);
(d) be connected to the fire alarm system for the premises.

5.8 Emergency generator

SPECIFICATION

(a) GENERAL

The emergency generator set shall be designed for cold starting and be capable of supplying power for the full rated essential load in not more than 15 seconds from initiation of the starting procedure.

The emergency generator set shall be capable of continuously operating under the appropriate site conditions which shall normally be a temperature range of 5 deg. C to 40 deg. C, relative humidity 100% and the altitude of the actual site.

Each essential item of equipment incorporated in the emergency generator set shall be to the latest edition of the relevant British Standard or alternative equivalent national or international standard. Full compliance with the current edition of the I.E.E. Wiring Regulations (British Standard 7671) shall also be necessary.

The emergency generator set shall be completely assembled and tested at the manufacturer’s works and delivered to site as a complete unit.

The prime mover may be of any form provided that the start-up time of 15 seconds is not exceeded and reliability is ensured.

Petrol, kerosene and similar highly volatile liquid fuels are not acceptable.

The emergency generator set shall have a minimum continuous full load rating of not less than the consumption of all fire service installations and fireman’s lift(s) connected thereto, running simultaneously. Under all load conditions the output voltage and frequency shall be maintained for satisfactory operation of all fire service installations devices.

A sign shall be provided for each generator set and affixed in a prominent position inside emergency generator room and main switch room to indicate the essential loading of fire service installations and fireman’s lift(s) connected to the generator. The English and Chinese characters of the sign shall be at least 8 mm and 15 mm high respectively and the details are as follows:—

If one generator set is designed to serve more than one block or if any non-FSI load is required to be connected to the emergency generator, approval should be obtained from the Director of Fire Services.
(b) **FUEL STORAGE**

The unit shall be complete with a fuel storage system capable of sustaining full load operation for a period of not less than 6 hours.

(c) **INSTALLATION**

Adequate (not less than 600 mm) space all round units shall be provided for maintenance and cleaning.

Adequate ventilation shall be provided for both combustion and cooling air. If fans are necessary to provide this air they shall operate at all times while the emergency generator set is running.

The air supply and discharge shall be direct to outside air without any possible obstructions i.e. no fire, smoke or regulating dampers shall be fitted. Where the air supply and/or exhaust ductwork is not fully contained within the generator room but passes through adjacent compartments or units the ductwork shall be so constructed as to have the same FRP as the FRP required for either the generator room or the compartment through which it passes, whichever is the greater.

Exhaust discharge of combustion products shall not cause a public nuisance and shall be in accordance with the guidelines and requirements of the Director of Environmental Protection.

(d) **OPERATION**

Failure of one or more phases of the mains supply, or a reduction of voltage to less than 70% of normal, for a duration exceeding 1 second, shall initiate automatic starting of the emergency generator set. Full load transfer shall take place automatically. Should the prime mover fail to start, a further attempt to start shall then be made.

If it again fails to start, the starting sequence shall be locked out, an audible and visual alarm shall be given locally, and at the fire control main panel, and it shall remain in this locked out condition until manually reset.

The starting system shall have a capacity to ensure four starting operations.

Restoration of the mains supply during the starting period shall not interrupt the starting sequence but shall prevent operation of the load transfer.

Subsequent failure of the mains supply for a duration exceeding 0.5 second, while the unit is running, shall cause the load transfer to take place.

An audio device and an indicator light on the fire control main panel, or if no fire panel, an indicator light outside the generator room, shall indicate that the generator is running.

5.9 Emergency lighting

SPECIFICATION

Emergency lighting for all premises shall comply with British Standard 5266: Part 1 and BS EN 1838 except that exit sign shall be as at Section 5.10 hereof.

Emergency lighting shall be backed up by emergency power supply. If the building is not equipped with an emergency generator, the emergency lighting shall be provided with secondary battery.

In the event of power failure, the emergency lighting shall be activated within 5 seconds for all bowing alleys, commercial buildings, hotel buildings and institutional buildings.

CINEMAS, THEATRES, ETC.

Emergency lighting for cinemas/theatres and other specified premises used for entertainment shall, additionally, comply with the following:—
(a) Battery emergency lighting systems shall be operated at a normal battery voltage of not less than 24 volts and not more than 120 volts D.C., from a common bank.

(b) Batteries used shall be heavy duty of rechargeable (secondary) type; batteries of primary cells of any type whatsoever will not be acceptable.

(c) Batteries shall be installed in a room approved for this purpose by the Licensing Authority unless the battery is an enclosed type which conforms to British Standard 6133 with capacity not exceeding 400 ampere-hours or the battery is valve regulated sealed type conforms to British Standard 6290 : Part 4.

(d) Batteries in celluloid containers shall not be installed, stored or used.

(e) A margin allowance of 12½ % of the total required battery capacity (amperehour rating not voltage) shall be provided, i.e. 100% + 12½ % = 112 ½ %.

(f) All batteries for the emergency lighting circuits shall be kept fully charged at all times and shall be capable of maintaining the stipulated lighting levels for a period of not less than 2 hours.

(g) An automatic trickle charger with mains input and suitable output, fitted with meters, regulators and pilot lights, shall be provided for the batteries. The charger shall be capable of fully re-charging the batteries in not more than 12 hours, if the emergency lighting is not also backed up by emergency generator.

(h) Upon failure of the main lighting system the emergency lighting system shall automatically light up.

(i) In the event of failure of the main lighting the public shall, unless the capacity of the battery is sufficient to maintain specified conditions for not less than four hours, within one hour be required to leave the building and they shall not be re-admitted until the general lighting has been fully restored and the emergency system recharged.

(j) The supply from the batteries shall feed a main distribution fuse board and thence be subdivided to four subdistribution fuse boards, as follows:—
 Exit lighting
 Stair lighting
 Auditorium lighting
 Stage lighting

(k) Outgoing circuits shall be suitably protected by fuses to British Standard 88 or miniature circuit breakers to BS EN 60898.

(l) A diagram showing details of the distribution system and the circuit wiring of the emergency lighting system shall be erected at the main distribution board.

(m) The emergency lighting system shall be wired in M.I.C.C. cable to British Standard 6207 or other fire resistant cable approved by the Loss Prevention Council and be fully segregated from the general distribution system.

(n) The minimum illumination provided at floor level by the emergency lighting system shall be:—
 Staircase not less than 2 Lux.
 Nightclub, restaurant, dance hall, or premises where people have freedom of movement and there are loose fixtures and fittings not less than 1 Lux.
 Cinemas and theatres not less than 0.5 Lux.

 measured at the mid-point between any two emergency lighting fittings. A discretionary tolerance of minus 10% is permitted and all readings shall be taken by an illuminance meter.

(o) All points shall have equal lumen output and distribution characteristics giving equal intensity of light in all material directions. Each point shall be so sited as to avoid impairment of vision from glare. Points, except where so specified and approved, shall be mounted at a height of not less than 2 metres.

(p) The maximum permissible period for visual adaptation shall not exceed 5 seconds at any point on the premises.
The minimum number of fittings permissible in any installation shall not be less than two (N.B. if only one fitting were provided and a lamp filament failure occurred, a hazardous situation would result.)

All lighting fittings in the emergency lighting system shall be of flame retardant construction, shall comply with BS EN 60598-2-22 and be permanently fixed in position.

5.10 Exit sign

SPECIFICATION

INTERNALLY ILLUMINATED SIGNS

Internally illuminated signs to British Standard 5499 : Part 3 are approved for general use as both exit and directional signs. These signs shall be connected to both mains and emergency power supply. If the building is not equipped with an emergency generator, the signs shall be provided with secondary battery in accordance with British Standard 5266 : Part 1.

SELF LUMINOUS SIGNS

Self luminous signs to British Standard 5499: Part 2 or other standards acceptable to the Director of Fire Services are approved for use as both exit and directional signs only in premises such as:

(a) Premises requiring the provision of Audio/visual advisory system according to Section 5.1
(b) Government Buildings
(c) Gymnasiums and Stadiums
(d) Hotels and Service Apartments
(e) Institutional buildings as defined in Section 3.1
(f) Museums, Exhibition Halls, Libraries and Places of Worship
(g) Office Buildings
(h) Parking Garages
(i) Passenger and Cargo Terminals
(j) Tunnels
(k) Temporary Show Flats
(l) Other premises or buildings as approved by Director of Fire Services from time to time provided they are under single ownership or central management.

A self-luminous sign illuminated by tritium or other radioactive source shall be indelibly marked at its lower corner to indicate the radiation hazard and the expiration date (Month/Year) of the sign for easy identification purposes and shall have a label at its back giving instruction or warning to users on the proper method of disposal as required by the Radiation Board.

EXIT SIGN REQUIREMENT

Sufficient exit sign shall be provided to ensure that all exit routes from any floor within the buildings are clearly indicated as required by the configuration of staircases serving the buildings. The signs shall bear the words in English and Chinese of not less than 125 mm high as shown in Figure 1. The letter style shall be in 'Helvetica' or 'Marigold' or 'Modified Garamond' as indicated on the samples while the Chinese characters shall be with width of vertical strokes not less than 15 mm and with width of horizontal strokes not less than 10 mm.

EXIT 出口
EXIT 出口
EXIT 出口
Helvetic
Marigold
Modified Garamond

FIGURE 1
DIRECTIONAL SIGN REQUIREMENT

If a sign is not installed immediately above an exit or if an exit is not clearly visible from normally occupied parts of the premises, directional signs shall be erected to ensure that all exit routes from any floor within the buildings are clearly indicated as required by the configuration of staircases serving the buildings. The graphics of directional signs shall be as shown in Figure 2. Signs having substantial compliance with Figure 2 shall also be acceptable.

![Figure 2](image)

FIGURE 2

COLOURS

Colour contrast for translucent surrounds to lettering shall be as follows:

<table>
<thead>
<tr>
<th>Colour</th>
<th>Contrasting Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>White</td>
</tr>
<tr>
<td>White</td>
<td>Green</td>
</tr>
</tbody>
</table>

White figure or lettering is preferred for internally-illuminated and self-luminous signs. The colour combination selected shall preferably be consistent throughout the same building.

Exit and directional signs shall be positioned between 2 m and 2.5 m above floor level measured to the base of the sign. If this is not practicable, the Director of Fire Services should be consulted.

5.11 Fire alarm system

SPECIFICATION

Note: This section deals only with manually operated alarm points of a system.

Manual fire alarm system shall comply with relevant sections of British Standard 5839: Part 1:1988. Pure manual systems such as hand bells, whistles, rotary gongs, etc. are not within the scope of this Code, however, subject to the approval of the Director of Fire Services, an existing sound signal system within a premises may be utilized as a manual fire alarm system (e.g. school premises) subject to the specific signal being used solely to notify occupants of a fire situation.

Manual actuating points of a pattern conforming with standards acceptable to the Director of Fire Services may be interconnected with an automatic fire detection system. Such manual actuating points shall be installed in compliance with the appropriate standard, in such locations within the premises, as set out elsewhere in this Code for the individual types of premises. In addition, manual actuating points shall be provided at each storey exits and all exits to open air. Where the building is provided with a caretaker’s or management office, one actuating point and the control panel shall be provided therein.

The manual fire alarm system shall be linked to the fire detection system and the Fire Services Communication Centre by direct line where a fire detection system is provided for the building.

Visual alarm signals in addition to audio warning devices shall be provided to form part of the fire alarm system in accordance with the current Design Manual: Barrier Free Access. The visual alarm signals shall be in the form of flashing red lights, labelled ‘FIRE ALARM’ (height of English
letters and Chinese characters shall not be less than 10 mm & 15 mm respectively. They can be indicated on separate plate affixed nearby or engraved on the light cover). Design of the visual alarm signals shall conform to Section 4-4 NFPA 72, National Fire Alarm Code with red flashing lights or Clause 9.7 of BS 5839: Part 1: 1988.

In addition to DC supply and back-up power from battery, all Visual Fire Alarm (VFA) systems may alternatively be powered by AC supply with secondary supply from emergency generator or electricity obtained before the main switch.

For VFA systems installed according to BS 5839, the visual alarm signal shall be in form of red flashing light and the minimum rating of an VFA shall be 15 cd. For spacing, the basic requirement is that the flashing light should be visible to normal eyesight in all areas required to be protected. A broad guideline for the installation is that one VFA point shall be located near every hose reel and alarm point. Each compartment shall be provided with at least one VFA point and the maximum distance between two VFA points shall not exceed 60 m.

5.12 Fire control centre
SPECIFICATION
A room/compartment normally at ground floor level on the main face of a building, preferably adjacent to main entrance.

The room shall be separated from the remainder of the building by walls having a minimum fire resisting period of one hour, and shall be large enough to house equipment, recorders, annunciators, etc. ancillary to the fire protection system installed in the building.

It shall be continuously manned by trained personnel.

Local termination/repeaters of fire protection and life safety systems will be installed together with test facilities of the systems as appropriate.

Electrical supply will be from the essential supplies circuit (both normal and emergency).

It may be called into use as Fire Services Department Command Unit during an incident involving the premises.

5.13 Fire detection system
SPECIFICATION
Systems shall be installed in accordance with the Rules of the Loss Prevention Council for Automatic Fire Detection and Alarm Installations for the Protection of Property and BS 5839: Part 1: 1988 or other standards acceptable to the Director of Fire Services. A direct line connection shall be provided to the Fire Services Communication Centre or such other premises as may be agreed with the Director of Fire Services.

Detection heads may be of heat detecting type or smoke detecting type and heads of both types may be installed within the same system. The choice of type of head will in most instances be dictated by the circumstances, however, liaison with the Fire Services Department in the planning stage is essential.

Monitoring of the system in the early stages of building operation will be necessary to “locate” any head that, for any reason, is originating false/unwanted alarms.

5.14 Fire hydrant/hose reel system
SPECIFICATION
(a) HYDRANT
Each hydrant assembly shall conform with British Standard 5041: Part 1 as appropriate.

The hydrant shall be of non-corrosive metal. Each outlet of all hydrants shall be of male round thread or female instantaneous type conforming to British Standard 336 and be individually controlled by a wheel-operated screw valve designed to open by counterclockwise rotation. The direction of opening of the valve shall be clearly engraved in both English and Chinese on the wheel of the valve.

The hydrant outlet shall be not less than 800 mm nor more than 1 200 mm above finished floor level.

The hydrant shall be prominently sited in an approach lobby to a staircase or in the staircase
enclosure. When recessed there shall be an all round clearance between any part of the hydrant outlet and valve and the enclosing walls sufficient to permit the free use of the hydrant and the fitting of an adaptor. When not recessed the hydrant shall be adequately protected against damage. As an optional safe guard against tampering or pilfering, the hydrant whether or not installed in recessed position, may be protected by lockable glass panels/cabinets, provided that the glass shall be of fragible type and shall not exceed 3 mm in thickness, and that it shall be of such size and design as would not cause any obstruction to the free use of the hydrant. Such glass panels/cabinets may be linked to security alarms.

The hydrant shall not obstruct wholly, partly or indirectly any door opening, or the required width of any exit route.

The hydrant shall be so sited as not to be concealed by the leaves of an adjacent door when that door is opened.

Water supply for hydrant system may be fed by static pressure directly from the elevated water tank without fixed fire pump if such pressure and flow are sufficient to give the required performance as that specified with fixed fire pump provided.

(b) **HOSE REEL**

The design of the hose reel shall be such that the tubing is permanently connected, via pipes in the drum of the hose reel and such stuffing boxes as may be necessary, to the supply main or the hydrant supply main.

The internal bore of the hose reel tubing shall be not less than 19 mm, such tubing shall have a bursting pressure of not less than 2 700 kPa and shall not be porous nor exhibit any sign of percolation under pressure up to 2 000 kPa.

The tubing of every hose reel shall not exceed 30 metres in length and be capable of being wound round a drum of not less than 150 mm in diameter and led around sharp obstructions without kinking. When fitted with hose reel nozzle, the tubing shall be capable of projecting a jet not less than 6 metres in length.

The hose reel nozzle shall have a 4.5 mm orifice and be fitted with a simple two-way valve to open or shut off the jet. The valve shall not be spring-loaded.

The hose reel control valve shall be of gate valve type approved by the Hong Kong Water Authority. Such valve shall be closed by turning the hand-wheel in a clockwise direction. A simple two-way ball valve approved by the Hong Kong Water Authority may be used as an alternative to a gate valve.

Hose reel drums shall be painted in red. The hose reel assembly shall be robust in construction and be capable of withstanding normal impact and stress during operation.

Rising mains and associated pipework used for the hose reels shall be not less than 40 mm nominal bore and pipes feeding individual hose reel shall not be less than 25 mm nominal bore.

A hose reel shall be so installed that its control valve and nozzle, which should be situated adjacent to each other, are at a position above and not more than 1 350 mm from the finished floor level. For a recessed type hose reel, such control valve and nozzle may be recessed to a discernible and accessible position of not more than 500 mm from the surface of the wall. Fire hose reel nozzles should be housed in a glass-fronted cabinet secured under lock and key. The glass panel shall be of fragible type and shall not exceed 1.5 mm in thickness, and that it shall be of such size and design as would not cause any undue obstruction to the free use of the hose reel. Furthermore, a metal or plastic striker about 300 mm long, should be provided inside the cabinet for the purpose of breaking the glass panel in case of emergency.

The hose reel should normally be located in occupied units/areas to enable the occupants of the building to attack a fire. However, in case of a building having a number of small units, hose reels may be located in common areas immediately outside the occupied units/areas on that floor to provide coverage as specified in respective paragraphs of Part IV.

Any hose reel sited on any escape route may be of fixed type or swinging cradle type and recessed into the wall. If the hose reel is carried on a swinging cradle, it should be constructed in such a way that when not in use the outer face of the reel is flush with the wall and when required for use the cradle may swing out freely into the corridor or passage. If the hose reel is of a fixed type, suitable guide ring(s) shall be installed to permit easy withdrawal of the hose reel tubing.

If hose reels are located in recesses to which doors are fitted, such doors shall be hinged so that
when they are opened, they shall not cause obstruction to any means of escape nor to the
operation of the hose reels nor to the hose being run out in either directions. The doors shall bear
the words “FIRE HOSE REEL” (消防喉轆), lettering of which shall be of at least 50 mm high.
Door locks shall not be fitted to such doors. As an optional safe guard against tampering or
pilfering, the hose reels, whether or not installed in recessed position, may be protected by
lockable glass panels/cabinets, provided that the glass shall be of fragible type and shall not
exceed 3 mm in thickness, and that it shall be of such size and design as would not cause any
undue obstruction to the free use of the hose reel. Such glass panels/cabinets may be linked to
security alarms.

An operation instruction notice of the hose reel shall be provided and affixed to the wall in a
prominent position adjacent to the hose reel. If the hose reel is located in a recess to which a door
is fitted, such notice shall be affixed immediately below the words “FIRE HOSE REEL” on the
outer surface of the door. They shall be finished in such a way that they would not be subject to
undue weathering. The notice shall be clearly marked with the following standard wordings in
English and Chinese characters of at least 5 mm high in red lettering on white background or
white lettering on red background. Pictorial instructions showing the components and operation
of the hose reel set may be provided in addition to the standard notice.

TO OPERATE FIRE HOSE REEL

(1) BREAK GLASS OF THE FIRE ALARM CALL POINT. (or)
 打爛火警鈴玻璃
 ACTUATE FIRE ALARM CALL POINT.
 按動火警鈴

(2) OPEN CONTROL VALVE BEFORE RUNNING OUT HOSE.
 先開啓閥門，再拉出膠喉

(3) TURN ON WATER AT NOZZLE AND DIRECT JET AT BASE OF FIRE.
 將喉咀開啓，然後射向火之底部
 (NOT SUITABLE FOR ELECTRICAL FIRES)
 不適用於電火

Manual fire alarm call points shall be positioned at prominent and accessible locations near the
hose reels at a level of not more than 1 200 mm above finished floor level.

Upon actuation of any manual fire call point in the building, the fixed fire pump(s) shall come
into operation regardless of the zoning of the manual fire alarm call point. An independent
indication shall be provided at the fire control room or at the main entrance of the building to
indicate the floor upon which the manual fire alarm call point has been actuated.

Water supply for hose reel system or part of the system may be fed by static pressure directly
from an elevated water tank if such pressure is sufficient for its designed operation.

(c) SUPPLY TANK
 The reserve water supply for fire fighting shall be contained in a supply tank. (See Section 5.26)

(d) FIXED FIRE PUMP
 The fixed fire pump shall preferably be electrically driven. Where the motive power for the pump
is not electricity, alternative means for starting the pump manually in addition to manual fire
alarm call points, shall be provided adjacent to the pump together with starting instructions
prominently displayed. Once started, the pump must run continuously until stopped manually at
the pump control panel installed near the pump. In addition, a lock-off button may be installed
adjacent to this fire pump.

The fixed fire pumps shall be capable to provide adequate flow in the case of:

 (1) Industrial/godown buildings, for
 any 3 hydrant outlets (i.e. each with a flow of 450 l/min at a running pressure of not less
 than 350 kPa) operating simultaneously with an aggregate flow of not less than 1350 l/min.

 (2) Buildings other than industrial/godown buildings, for
 any 2 hydrant outlets (i.e. each with a flow of 450 l/min at a running pressure of not less
 than 350 kPa) operating simultaneously with an aggregate flow of not less than 900 l/min.

 The pressure at any fire hydrant outlet shall in no case exceed 850 kPa. The running pressure at
any hydrant outlet when delivering 450 l/min shall be not less than 350 kPa.
The fixed fire pump shall be duplicated for duty and standby use. The fire pump starting control shall be wired through a selector switch for duty and standby pump selection. Should the duty pump electrically or mechanically fail to operate within 15 seconds the standby pump shall be energized to become the duty pump.
The motor/engine driving the fixed fire pump shall be rated to give 20% more power in addition to the hydraulic power required for the rated flow of the system.
Fixed fire pumps shall be permanently primed with non-return valves installed at the discharge side of the pumps. Where necessary, non-return valves shall also be installed in other locations to prevent water backflow into the water tank.
The status of each fixed fire pump comprising “Power Supply On”, “Pump Running” and “Pump Failed” shall be monitored and displayed at the pump control panel and repeated at the fire control room or to a status panel at the main entrance of the building.
All fixed fire pumps shall be housed in suitable enclosures, preferably brick or concrete, designed solely for occupation by F.S. pumps. Such pump enclosures shall lie clear of any exit or normal communication routes through the premises and shall be clearly marked in English and Chinese characters “FIXED FIRE PUMP” (消防泵) and suitably locked to prevent unauthorized tampering of the pumps.

(e) **INTERMEDIATE BOOSTER PUMP**
In all buildings where the height between the topmost hydrant and the lowest Fire Service Inlet is in excess of 60 m, the flow and pressure, where necessary, shall be maintained by intermediate booster pumps incorporated in the rising main system.

With the fire engines boosting water into the Fire Service Inlet at a constant pressure of 800 kPa upstream of the Inlet, the intermediate booster pumps shall be capable to provide adequate flow for:—

1. Industrial/godown buildings
 — if only 1 rising main is installed in the building, the aggregate flow shall be not less than 1 350 l/min. (i.e. any 3 hydrant outlets each with a flow of 450 l/min at a running pressure of not less than 350 kPa)
 — if 2 or more rising mains are installed in the building, the aggregate flow shall be not less than 2 700 l/min. (i.e. any 6 hydrant outlets each with a flow of 450 l/min at a running pressure of not less than 350 kPa, with not more than 3 hydrant outlets operating in one rising main)

2. Domestic buildings
 — the aggregate flow shall be not less than 900 l/min. (i.e. any 2 hydrant outlets each with a flow of 450 l/min at a running pressure of not less than 350 kPa)

3. Other buildings
 — if only 1 rising main is installed in the building, the aggregate flow shall be not less than 900 l/min. (i.e. any 2 hydrant outlets each with a flow of 450 l/min at a running pressure of not less than 350 kPa)
 — if 2 or more rising mains are installed in the building, the aggregate flow shall be not less than 1 800 l/min. (i.e. any 4 hydrant outlets each with a flow of 450 l/min at a running pressure of not less than 350 kPa, with not more than 2 hydrant outlets operating in one rising main)

The pressure at any fire hydrant outlet shall in no case exceed 850 kPa. The running pressure at any hydrant outlet when delivering 450 l/min shall be not less than 350 kPa.
Intermediate booster pumps shall be duplicated for duty and standby use. One set of intermediate booster pumps (duty and standby) may feed all risers in the same system to supply the required flow and pressure. Should the duty pump failed to operate, the standby pump shall be energized to become the duty pump within 15 seconds.
Two or three pumps of same capacity arranged in parallel using sequential starting may be employed as the duty intermediate booster pumps to achieve the required pressure and flow within 30 seconds. Under this arrangement, only one standby pump is required and shall be
arranged in parallel to the above duty pumps. This standby pump shall be identical to a duty pump and capable to come into operation automatically upon failure of any duty pump.

The motor/engine driving the intermediate booster pump shall be rated to give 20% more power in addition to the hydraulic power required for the rated flow of the system.

All intermediate booster pumps shall be permanently primed and electrically driven. Once started, the pump must run continuously until stopped manually. Suitable start/stop push buttons together with pump running indicator lights and alarm buzzers shall be provided adjacent to the Fire Service Inlets to enable Fire Service personnel to exercise control of the intermediate booster pumps. For building with tower(s) on podium, such start/stop buttons shall be provided adjacent to the Fire Service Inlet nearest to the staircase serving the tower. Clear indications in English and Chinese characters “INTERMEDIATE BOOSTER PUMP CONTROL” (中間增壓泵控制) of at least 5 mm high shall be provided.

The status of each intermediate booster pump comprising “Power supply on”, “Pump running” and “Pump failed” shall be monitored and displayed at the pump control panel and repeated to the fire control room or to a status panel at the main entrance of the building.

All intermediate booster pumps shall be housed in suitable enclosures, preferably brick or concrete, designed solely for occupation of F.S. pumps. Such pump enclosures shall lie clear of any exit or normal communication routes through the premises and suitably locked to prevent unauthorized tampering of the pump(s). Such enclosures shall be clearly marked in English and Chinese characters “INTERMEDIATE BOOSTER FIRE PUMP” (中間增壓消防泵) of at least 50 mm high.

The intermediate booster pumps may also be utilized as the fixed fire pump if they are arranged to perform both functions as stipulated.

(f) RISING MAIN

The nominal bore of the rising main, in industrial/godown buildings shall be not less than 100 mm. Each rising main shall supply 2 hydrant outlets per floor.

The nominal bore of the rising main in other types of buildings shall be not less than 80 mm. Each rising main shall supply one hydrant outlet per floor.

Each rising main shall be provided with a standard Fire Service Inlet at ground floor level. Where the intermediate booster pump is interposed between the Fire Service Inlet and the hydrant outlets, provision must be made for the water supplied to the Inlet to by-pass this pump in the event of failure of the pump.

All rising and down coming mains shall be permanently primed with water and fitted with air relief valves at suitable locations to prevent air lock in the installation.

Each rising main shall be connected to an independent Fire Service Inlet. Where there are more than one rising main in the system, such Inlets shall be interconnected. Header pipe(s) may be provided to connect the Fire Service Inlets to the rising mains. The header pipe shall be positioned close to Fire Service Inlet(s) wherever practicable, with a maximum height of 30 m above ground level. The diameter of the header pipe shall be not less than 150 mm nominal bore for industrial/godown buildings and 100 mm nominal bore for other buildings.

In the case of an industrial/godown building, a rising main shall be provided for each staircase, with independent Fire Service Inlet and inter-connection as described above.

The Director of Fire Services may require additional rising mains dependent upon the layout of the building.

(g) FIRE SERVICE INLET

Each Fire Service Inlet shall be in a prominent position on the exterior of the building and preferably near the staircase where its rising main situated. Each Fire Service Inlet must be suitably identified, enclosed and protected against corrosion and abuse. The Inlet shall be readily accessible by Fire Services personnel.

The inlet couplings shall be not less than 600 mm nor more than 1 000 mm above the ground level and shall be of a standard pattern approved by the Director of Fire Services.

There shall be a non-return valve behind each inlet.

Each Inlet shall be affixed with a metal identification plate raised or engraved with English and
5.15 **Fire Resisting Cable for Fire Service Installations**

SPECIFICATION

The requirements of fire resisting cables for sprinkler, fire alarm and emergency lighting installations are clearly specified in respective sections of LPC Rules for Automatic Sprinkler Installations (BS 5306: Part 2: 1990), LPC Rules for Automatic Fire Detection and Alarm Installations (BS 5839: Part 1: 1988) and paragraph 5.9 of this Code – BS 5266: Part 1: 1999. For other types of fire service installations, the fire resisting cable requirements are listed in APPENDIX 6.

5.16 **Fireman’s lift and Firefighting and rescue stairway**

The design and construction of fireman’s lift and firefighting and rescue stairway shall comply with the requirements stipulated in

(a) the Code of Practice on the Design and Construction of Lifts and Escalators issued by the Director of Electrical and Mechanical Services; and

(b) the Codes of Practice for Means of Access for Firefighting and Rescue and Provision of Means of Escape In Case of Fire issued by the Building Authority.

5.17 **Fixed automatically operated approved appliance**

SPECIFICATION

Such appliances designed to operate as independent units are included in this section.

Nevertheless, subject to the agreement of the Director of Fire Services a number of units, may be installed within a compartment such that operation of any one unit will automatically cause all units within the compartment to operate.

All appliances shall be approved by the Loss Prevention Council or to other acceptable national standards.

5.18 **Fixed foam system**

SPECIFICATION

Systems shall be installed in compliance with standards acceptable to the Director of Fire Services.

Attention is drawn to British Standard 5041: Part 5.

Consultation with the Fire Services Department is strongly recommended in the design stage of any system. Particular attention to be placed on compatibility of various foam compounds, and integration of Fire Services equipment into the system.

A comprehensive ongoing training programme is necessary if the system is intended to be brought into use by employees.

5.19 **Gas detection system**

SPECIFICATION

Very few types of premises will require such a system. Each system must be designed to detect the escape or excessive concentration of the specific gases appropriate to the area of risk.

The system shall be designed in consultation with the Fire Services Department.

Each system shall:

(a) monitor the area of risk continuously;

(b) be automatic in operation;

(c) close down affected process if circumstances permit;

(d) operate ventilation/exhaust system if appropriate;
be connected to the fire alarm system for the premises.

5.20 Portable hand-operated approved appliance

SPECIFICATION

Attention is drawn to Fire Service (Installations and Equipment) Regulations, Chapter 95. Appliances shall have received the Loss Prevention Council or other acceptable standard approval.

5.21 Pressurization of staircase

A. DESIGN AND SUBMISSIONS

A. 1 The designer shall be Registered Professional Engineer under Cap. 409 on Building Services or Mechanical Engineering which emphasizes mechanical ventilation and air handling.

A. 2 The designer shall be responsible for all submissions to the Fire Services Department and each drawing and all calculations shall be signed by the designer on behalf of the design company/organisation, as having been checked by him, and that they comply fully with the requirements of this Code of Practice.

A. 3 All drawing submissions shall be in the form set out in the FSD Circular Letters issued by the Fire Services Department.

A. 4 All submissions shall include all necessary schematic diagrams required to fully explain the operation of the installations including not less than “normal”, “fire”, and “no power” modes.

A. 5 System design shall be based on the requirements of British Standard 5588 “Fire Precautions in the Design of Buildings”: Part 4 “Smoke Control in protected escape routes using pressurization” (latest edition) with the following changes:

- (a) Table 1—the minimum pressurization level of 50 Pa shall be achieved with all doors closed and all pressure relief systems operating. The maximum design pressurization level shall be such that under no circumstances shall the combined force, to overcome the pressure differential across any door and the action of the door closer, exceed 133 N (13.5 kgf) when applied at the designed door opening handle or push plate position.

- (b) Calculations shall allow for pressurization to be maintained and/or the minimum average egress velocity through all entry doorways of 0.75 m/s be maintained with any three single leaf doors (one on each of 3 consecutive levels) and the largest exit door open, plus leakage allowances for all other doors.

- (c) Note that in British Standard 5588: Part 4 CLAUSE 6.1, Code of Practice 352 has been withdrawn and replaced by British Standard 5720.

- (d) The minimum fire resistance rating for the enclosure of the pressurization plant detailed in clause 6.3.4 of British Standard 5588: Part 4 should be the same as that of the staircase served.

- (e) See Section G hereof for amendments to Clause 6.3.2 of British Standard 5588: Part 4 on standby plant requirements.

- (f) The staircase pressurization system shall be designed either as a single or multiple injection system based on the following criteria:

 - (i) For buildings with an overall height less than 30 m, a single injection or multiple injection system shall be acceptable.
 - (ii) For buildings with an overall height of 30 m or more, only a multiple injection system with air supplies at no greater than 12 m apart, shall be acceptable.
 - (iii) For buildings with refuge floors the criteria in (i) and (ii) shall apply, but the height shall be measured from the floor level of the lower refuge floor to the floor level of the next refuge floor.

This supersedes the requirements of Clause 5.4.1 of British Standard 5588: Part 4.
B. **BASIC CONSIDERATIONS**

B. 1 One system for each pressurized staircase shall be provided.

B. 2 Fire compartmentation shall be ensured at all times.

B. 3 Duct construction within the fire compartment that is served by the system shall be, as a minimum requirement, to not less a standard than Heating and Ventilation Contractor Association specification D.W. 144 or subsequent amendments. Flat oval ducts wider than 1 m shall not be used. Aluminium sheets shall NOT be used.

B. 4 All ductwork, including builders work ducts or shafts or other construction, in these systems shall be pressure tested to Heating and Ventilation Contractor Association specification D.W. 143 or subsequent amendments. Retest as necessary after correcting any excessive losses. All results obtained shall be recorded and the record shall be signed by both the person carrying out the test and an independent witness. (see also Section 2.21(ii) of the Code of Practice for Inspection, Testing and Maintenance of Installations and Equipment).

B. 5 Generally there shall be no fire or smoke dampers nor other restrictions in the ductwork or shafts.

B. 6 Generally all systems shall be automatically activated whenever any fire service installation in the building is activated. (see section “E. ACTUATION AND CONTROL”)

B. 7 All systems shall be provided with remote on/off override control at the fire control panel. (see section “E. ACTUATION AND CONTROL”)

B. 8 The AIR INTAKE ARRANGEMENTS should be in accordance with Clause 6.2 of British Standard 5588: Part 4.

B. 9 In order to prevent “over pressure” within the staircase the designer shall provide a pressure relief system. This shall be provided by any one or combination of the following:—

 (i) automatic opening of the external exit doors on operation of the fan.

 Note: For single injection system this method of “over pressure” relief cannot be utilized if the system is designed with the supply air point at the same level as the exit door.

 (ii) Barometric Pressure relief vents to open automatically when the pressure exceeds the highest designed pressure. The location and arrangement of these valves shall be selected to maintain both the integrity of the fire rating of the staircases and the minimum design pressure.

 (iii) an exhaust fan actuated by differential pressure sensors so that it will not operate when the pressure falls below a specified level.

 (iv) a supply fan bypass which will vary the amount of air entering the staircase by actuating modulating bypass dampers controlled by differential pressure sensors sensing the pressure differences between the staircases and the building.

B. 10 At every floor served by the Pressurized Staircase, a low resistance air flow path shall be provided to allow the designed air flow rate through the door, to be vented to the open air.

C. **ARCHITECTURAL AND CONSTRUCTION CONSIDERATIONS**

C. 1 The stair enclosure shall be constructed in such a manner as to reduce the number and size of air leakage paths to a minimum.

D. **DOOR SETS**

D. 1 All doors sets (i.e. doors, frames and hardware) providing access to or from any pressurized staircase shall be to the satisfaction of the Building Authority.

D. 2 The provision of supplementary gaskets to assist in preventing smoke leakage will not be permitted.

D. 3 All doors, closers, hardware, etc. shall be suitable for continual use in an atmosphere of 35 deg. C and 100% R.H.

D. 4 Door sets shall be installed in such a manner as to be smoke-resistant and all joints between frames and building structure shall be provided with sealants complying with British Standard 476: Part 23.

D. 5 Self closers shall be provided for all doors to ensure integrity of the enclosure. The closers shall have been part of a “door, door frame and ironmongery” test assembly which has successfully
passed the test in accordance with British Standard 476: Part 22. The closers shall be of such a design that they cannot be defeated i.e. no removable pins or bolts, etc.

D. 6 Door closers shall be adjusted such that the force necessary to open the door shall comply with that allowed in the design calculations see para. A.5(a). The testing of such force shall take place under static conditions i.e. the staircase pressurization system not operating.

D. 7 Care shall be taken that the finished sill under the closed doors shall be wear resistant i.e. of terrazo or similar finish.

D. 8 Inspection and testing of all door sets, closers, releases, etc. shall form part of the acceptance tests conducted under Section 2.21(i) of the Code of Practice for Inspection, Testing and Maintenance of Installations and Equipment.

D. 9 Further inspection and testing of these components shall take place as part of the annual maintenance certificate inspection detailed under para. 4 of Section 2.21(ii) of the Code of Practice for Inspection, Testing and Maintenance of Installations and Equipment.

E. ACTUATION AND CONTROL

E. 1 All systems shall be automatically actuated and remain in operation. It shall be able for manually reset and monitored by audio and visual indication. Actuation of all systems shall be direct from the local automatic fire alarm panel whenever that panel transmits a ‘Fire’ signal to the Fire Services Communication Centre.

E. 2 Where any building or that portion of a building immediately adjacent to a designated pressurized staircase is not provided with a smoke detection system, smoke detectors shall be installed at a distance not exceeding 1 m from and outside the access doors to the staircase or its approach lobbies to activate the system.

E. 3 When in “fire” mode no system connected therewith shall be controlled or under the influence of any Building Management or Automation System nor shall failure or close down of such B.M.S. or B.A.S. prevent its operation. However, such B.M.S. or B.A.S. may monitor the operations if desired.

E. 4 No transmission of actuating signals for the staircase pressurization system shall be effected by multiplex or similar devices unless such devices have the approval or certification of one of the Testing Authorities recognised by the Fire Services Department.

E. 5 Control panel shall be provided for all staircase pressurization systems and located adjacent to fire control panel with the following facilities provided.

(a) Switches for all staircase pressurization systems shall be grouped in one area of the panel together with those for smoke extraction systems or the like. On/Off switches for each fan shall be provided.

(b) All switches shall have the same method/direction of operation.

(c) The indicator light shall be actuated by a device that senses effective operation, such as an air-flow switch or an air pressure switch, of the relevant pressurization system.

(d) Manual override facility shall be of manually reset type. Audio and visual indications shall also be provided to monitor the status of the manual override device. These indications shall be installed in public area, if the location of the staircase pressurization control panel is not normally manned. After actuating the manual override device, all staircase pressurization systems shall be individually operated via the staircase pressurization control panel.

(e) All switches and indicators shall be clearly labelled (red letters on white background, not less than 3 mm high) to show the operating positions and systems served.

(f) A further label shall be provided with letters not less than 6 mm high stating that the controls shall be operated by authorized personnel.

(g) All labels shall be permanent, legible and firmly secured (adhesive is not satisfactory) and shall be lettered in both English and Chinese by engraving or similar.

(h) Simplified schematic diagram for all staircase pressurization systems shall be provided
adjacent to the staircase pressurization control panel.

E. 6 In each staircase pressurization fan intake duct, a suitably designed smoke sensor shall be installed which, when sensing the passage of smoke, shall override all other controlling devices, and shut down the staircase pressurization system, being served by that fan.

F. **ELECTRICAL & AUTOMATIC CONTROLS**

F. 1 All equipment serving staircase pressurization systems shall be provided with an electrical supply from essential source.

F. 2 Cable routes shall be selected in such a way as to protect them from a fire anywhere in the building and to reduce likelihood of failure due to external effects—mechanical, electrical or physical.

F. 3 All controls, starters, relays, etc., shall be suitable for continuous operation at 250 deg. C for not less than 1 hour. All electrical power cable used shall be of fire resistant cable, and for those control cables NOT of fire resistant type shall be enclosed in metal conduit systems.

However the following situations are acceptable:

(a) Provided the main switchboard is of a type tested cubicle form constructed to British Standard 5486 from not less than 2 mm panel steel and is installed in a room having an F.R.P. (including self-closing doors) of not less than 2 hours and containing no other equipment, no further protection will be required. Also no further protection will be required for wiring, cables, or other electrical equipment.

(b) Sub-distribution boards and/or motor control centres constructed and installed as in (a) are similarly acceptable.

(c) The plant room housing the staircase pressurization fans shall contain no other services.

(d) Pressure sensors in the pressurized space shall be suitable for normal ambient conditions only i.e. not less than 37 deg. C and 100% R.H.

F. 4 Pressure sensors and associated equipment shall be of industrial process grade to BS EN 60654-1. Commercial quality heating, ventilation and air-conditioning controls are not acceptable.

G. **STANDBY OR DUPLICATE EQUIPMENT**

G. 1 For sleeping risk premises, i.e. Hotels, Hospitals, and where designated by the Director of Fire Services, with a single pressurized staircase, duplicate fans and motors shall be provided.

G. 2 For buildings with more than one pressurized staircase, single fans with duplicate motors fully belted and/or connected up shall be provided.

G. 3 If, however, except for sleeping risk premises, the total air requirement for each pressurized staircase is made up from two or more separate supplies acting together (e.g. top and bottom plants), then no further duplication of equipment is necessary.

G. 4 These requirements are based on Clause 6.3.2. of British Standard 5588: Part 4.

5.22 Ring main system with fixed pump(s)

SPECIFICATION

Attention is drawn to British Standard 5041, 5306: Part 1 and 5908. The system shall be specifically for fire fighting purposes, however if the water supply is adequate there is some merit in using the system for cleaning purposes, thereby effectively testing the system.

The mains may be installed aboveground or underground but must be protected against physical damage.

The system shall be fed from at least 2 water supplies to the satisfaction of the Director of Fire Services and the Water Authority. (See Section 5.30)

Pumps will be fixed and capable of automatic and manual start. Fire pumps shall be permanently primed and duplicated for duty and stand-by use. In respect of any particular project the Director of Fire Services may permit fire pumps serving other systems to be utilized for stand-by purposes.

Hydrant outlets will be to standard Fire Services Department pattern.
Hose reels may be installed at selected, or all, hydrant outlets as required by the Director of Fire Services.

Water piping used shall be of approved type in accordance with the standard requirements for fire service mains issued by the Water Supplies Department.

5.23 Smoke extraction system

(i) DYNAMIC SYSTEM

A. DESIGN AND SUBMISSIONS

A.1 The designer shall be Register Professional Engineer under Cap. 409 on Building Services or Mechanical Engineering which emphasizes mechanical ventilation and air handling.

A.2 The designer shall be responsible for all submissions to the Fire Services Department and each drawing and all calculations shall be signed by the designer, on behalf of the Design Company/Organization, as having been checked by him.

A.3 All drawing submissions shall be in the form set out in the FSD Circular Letters issued by the Fire Services Department.

A.4 All submissions shall include all necessary schematic diagrams required to fully explain the operation of the installations including not less than “normal”, “fire”, and “no power” modes as well as a full written description thereof.

A.5 Submissions shall include all details; certificates, etc. concerning temperature rating of equipment handling smoke, as required in para. B.20. The details can either be submitted on an item-by-item basis or on a complete system basis.

B. BASIC CONSIDERATIONS

B.1 All systems shall be as simple as practicable in all aspects and each shall comprise extraction and supply/make up air installations.

B.2 Fire compartmentation shall be ensured at all times.

B.3 All systems shall be “fail safe” to ensure a free passage of smoke.

B.4 Systems shall be arranged such that the travel of the smoke is generally counter-flow to that of the egress/escape route.

B.5 Egress/escape routes shall be kept as free as possible of smoke i.e. smoke flow shall be away from these routes.

B.6 Air/smoke flow paths shall be such that a “scouring” or “cross-flow” effect occurs in all areas within a fire compartment.

B.7 Smoke shall not travel more than 30 m before entering the nearest point of inlet to the extract system and at least one extract point shall be provided within each 500 square metres unit of floor area. The exceptions are Atria and Tunnels which shall be agreed on an individual project basis, and Hotels where requirements shall comply with para. G.2(2) hereof.

B.8 Point(s) of smoke extraction shall be from high level in the space concerned and shall be reasonably distributed.

B.9 Makeup air, where not mechanically propelled, shall have as direct and short a route as possible.

B.10 Make-up air shall enter at a low level and/or in such a manner as to avoid premature mixing with the hot gases.

B.11 Maximum velocities, based on free area of the grille, shall be:—

(a) At make-up air inlets where not mechanically propelled—3 m/s.

(b) At make-up air inlets where mechanically propelled—6 m/s.

(c) At extract grilles or outlets—6 m/s.
B. 12 Generally, the minimum supply or make-up air rate shall be 80% of the extraction rate. When supply or make-up air is provided by mechanical means this shall be supplied by a separate independent system or by the normal air conditioning system changing over to full outside air subject to para. B.10. i.e. positive ducted system, special air inlets, low level air supply points. As stated in para. B.2, fire compartmentation shall be ensured at all times.

B. 13 Separate systems shall be provided for each Atria or Basement compartment and/or as otherwise designated by the Fire Services Department. (see also section “D. BASEMENTS”)

B. 14 Duct construction shall be, as a minimum requirement, to not less a standard than Heating and Ventilation Contractor Association specificati on D.W. 144 or subsequent amendments. Flat oval ducts wider than 1 m shall not be used. Aluminum sheets shall not be used. Care shall be taken to ensure that no failure of ductwork will be caused by any pressure changes due to the sudden closure of fire or smoke dampers.

B. 15 As a general principle there shall be no fire and smoke dampers nor other restrictions in the ductwork of smoke control systems. The exceptions shall be where one extraction/supply system serves several compartments where motorised fire and smoke dampers shall be required, and at the main exhaust outlet louvre and main supply intake louvre, where motorised fire and smoke dampers may be required. The entire assembly of the fire and smoke damper shall be tested to maintain efficient operation at 250 deg. C for not less than one hour.

B. 16 If smoke extract system ductwork passes through compartments, any part of the ductwork within the serviced compartment beyond the fire and smoke dampers provided in accordance with para. B.15, and any part outside the serviced compartment shall be covered with insulation of minimum insulating period of 30 minutes in compliance with the Code of Practice for Fire Resisting Construction (1996 Edition) issued by the Buildings Department, such part shall be fire resisting to British Standard 476: Part 24, or be totally enclosed by fire resisting construction to British Standard 476: Part 20, to the same fire resisting period as the serviced compartment or the containing compartment whichever is the higher. This fire resisting ductwork shall be constructed from material which, apart from its fire resisting quality, shall be capable of resisting accidental mechanical damage and to this end shall require to pass the hard body impact test section of BS 5669 : Part 1 & 2 with the weight being dropped through not less than one metre. Alternatively the exterior surface of the fire resisting ductwork shall require to be totally protected from accidental mechanical damage. If smoke extract/make-up air fans are installed within the serviced compartment, the system including fans, motors, drives, electrical works, ductwork linking fans and the boundary of compartment etc. should be protected by a fire resisting material of rating not less than one hour.

B. 17 All ductwork including builders work ducts or shafts and other construction, in these systems shall, where outside the serviced fire compartment, be pressure tested to Heating and Ventilation Contractor Association specification D.W. 143 or subsequent amendments. No pressure sensitive tapes shall be used for seal ing. The ductwork system shall be retested as necessary after remedial action has been taken to reduce any excessive losses until satisfactory results are obtained.

B. 18 Shafts used for smoke extraction purposes shall contain no other services.

B. 19 All smoke extraction fans shall be connected directly to outside by non-combustible ductwork including flexible connection, if installed.

B. 20 Equipment handling smoke shall be suitable for continuous operation at 250 deg. C for not less than 1 hour. This includes fans, motors, drives, damper operators, ductwork, flexible ducts (preferably not to be used at all), etc.

B. 21 To prevent recirculation of smoke as far as possible, discharge outlets for smoke shall be separated by not less than 5 m in any direction from all air inlets or other openings into any building. They shall not discharge into any means of escape nor a free air Fireman’s Staircase. No discharges shall be at a height above the surrounding horizontal surface of less than 3 m to the bottom of the outlet and where below 6 m shall not discharge downwards. No discharges shall be under any canopy or overhang.

B. 22 Systems used for “normal” purposes may be utilised for smoke extraction purposes provided that under smoke extraction mode the construction and operation of the system complies with
the requirements herein.

B. 23 All systems to be automatically activated. (see section “K. CONTROL AND ACTUATION”)

B. 24 All systems shall be provided with remote on/off/override control at the fire control panel. (see section “K. CONTROL AND ACTUATION”)

B. 25 Actuation of systems shall be by a smoke detector installation serving the area unless otherwise detailed. Where considered appropriate and to reduce false alarms it is preferable that cross zoned smoke detector systems be utilised. Where a sprinkler system is provided, a flow switch on the main sprinkler feed pipe serving the area shall activate the system. In addition the system shall be operated by the operation of any other detection/protection system excluding the manual fire alarm system in the area/floor served.

B. 26 Smoke curtains systems used for separating different smoke compartments shall comply with British Standard 7346 Part 3 and the curtain material shall comply with British Standard 476 Part 20.

B. 27 In case that smoke extraction rate is designed by using a fire engineering approach, the maximum area of the smoke reservoir should not be larger than 2 000 square metres and the methodology should be approved by the Director of Fire Services.

C. ATRIA

C. 1 To be detailed as required.

D. BASEMENTS

D. 1 Comply with all requirements as detailed under:—
 (i) B. BASIC CONSIDERATIONS
 (ii) K. CONTROL AND ACTUATION
 (iii) L. ELECTRICAL AND AUTOMATIC CONTROLS
 (iv) M. STANDBY OR DUPLICATE EQUIPMENT

D. 2 Separate systems shall be provided for each compartment and each system shall comprise at least two independant plants and ductwork i.e. for a proportion of the area and extract/supply volumes.

D. 3 Where small separated areas which are normally not occupied occur within larger compartments, such as pump rooms, these areas may be connected to the extract system and be provided with fire dampers in all ducts serving the area at the separation wall. This does not apply to fire service installation rooms which are to have independant systems.

D. 4 The minimum extraction rate shall be equivalent to not less than eight air changes per hour of the total compartment volume. The design volume shall be considered to be 7 000 cubic metres for any compartment of 7 000 cubic metres or less.

D. 5 Emergency electrical supplies shall be capable of operating simultaneously all systems relevant to Smoke Extraction Systems in the two adjacent compartments having the highest total electrical load. “Adjacent” shall be in any direction.

E. BATTERY ROOMS AND ELECTRICAL CHARGING FACILITIES

E. 1 Details of smoke extraction systems are as set out in separate requirements for these particular facilities.

F. COMMERCIAL BUILDINGS

F. 1 Comply with all requirements as detailed under:—
 (i) B. BASIC CONSIDERATIONS
 (ii) K. CONTROL AND ACTUATION
 (iii) L. ELECTRICAL AND AUTOMATIC CONTROLS
 (iv) M. STANDBY OR DUPLICATE EQUIPMENT
F. 2 Any Basements shall comply with section “D. BASEMENTS” hereof.

F. 3 The minimum extraction rate shall be equivalent to not less than eight air changes per hour of the total compartment volume. The design volume shall be considered to be 7 000 cubic metres for any compartment of 7 000 cubic metres or less.

F. 4 Multi-zone smoke extraction/make up air system may serve up to ten separate ‘aboveground’ fire compartment but shall be capable of fully operating any one smoke extraction zone.

F. 5 Emergency electrical supplies shall be capable of operating simultaneously all systems relevant to smoke extraction system in any one “above ground” fire compartment in addition to any requirements for Basements and Atria.

G. HOTELS

G. 1 General

1. Comply with all requirements as detailed under:—
 (i) B. BASIC CONSIDERATIONS
 (ii) K. CONTROL AND ACTUATION
 (iii) L. ELECTRICAL AND AUTOMATIC CONTROLS
 (iv) M. STANDBY OR DUPLICATE EQUIPMENT

2. Any Basements shall comply with section “D. BASEMENTS” hereof.

3. Any atria, commercial or shopping areas shall comply with the relevant sectional requirements detailed herein.

G. 2 Internal Means of Escape shall comply with the following:—

(1) The minimum extraction rate shall be not less than 10 air changes per hour of the total compartment “Internal Means of Escape” volume.

(2) The supply and extraction points shall be distributed along the corridor in such a manner that the distance between any supply and extraction point shall not exceed 10 m.

(3) Any one smoke extraction/make up air system may serve the Internal Means of Escape of up to ten separate above ground fire compartments but shall be capable of fully operating any two such compartments simultaneously. Fire separation shall be maintained at all times.

H. INDUSTRIAL/GODOWN BUILDINGS

H. 1 Comply with all requirements as detailed under:—

(i) B. BASIC CONSIDERATIONS

(ii) K. CONTROL AND ACTUATION

(iii) L. ELECTRICAL AND AUTOMATIC CONTROLS

(iv) M. STANDBY OR DUPLICATE EQUIPMENT

H. 2 Any Basements shall comply with section “D. BASEMENTS” hereof.

H. 3 The minimum extraction rate shall be equivalent to not less than eight air changes per hour of the total compartment volume. The design volume shall be considered to be 7 000 cubic metres for any compartment of 7 000 cubic metres of less.

H. 4 In industrial processes where the hazard of fire is higher than normal, appropriate smoke hoods, boards or barriers should be provided to prevent spread of smoke.

H. 5 Any one smoke extraction/make-up air system may serve up to ten separate above ground fire compartments but shall be capable of fully operating any one such compartment. Fire separation shall be maintained at all times.

I. PLACES OF PUBLIC ENTERTAINMENT
I. 1 To be detailed as required.

J. **TUNNELS**
 To be detailed as required.

K. **CONTROL AND ACTUATION**

K. 1 All systems shall be automatically actuated and remain in operation. It shall be able for manually reset and monitored by audio and visual indication. Actuation of all systems shall be direct from the local automatic fire alarm panel whenever that panel transmits a ‘Fire’ signal to the Fire Services Communication Centre.

K. 2 When in “fire” mode no system connected therewith shall be controlled or under the influence of any Building Management or Automation System. However, such B.M.S. or B.A.S. may monitor the operations if desired.

K. 3 No transmission of actuating signals from the automatic fire alarm panel for the operation of the smoke extraction systems shall be effected by multiplex or similar devices unless such devices have the approval or certification of one of the Testing Authorities recognised by the Fire Services Department.

K. 4 Control panel shall be provided for all smoke extraction systems and located adjacent to fire control panel with the following facilities provided.

 (a) Switches for all smoke extraction systems shall be grouped in one area of the panel together with those for staircase pressurization systems or the like. Where the smoke extraction system is served by both supply and extract fans, on/off switches for each fan shall be provided.

 (b) All switches shall have the same method/direction of operation.

 (c) The indicator light shall be actuated by a device that senses effective operation, such as an air-flow switch or an air pressure switch, of the relevant smoke extraction/air handling system.

 (d) Manual override facility shall be of manually reset type. Audio and visual indications shall also be provided to monitor the status of the manual override device. These indications shall be installed in public area, if the location of the smoke extraction control panel is not normally manned. After actuating the manual override device, all smoke extraction systems shall be individually operated via the smoke extraction control panel.

 (e) All switches and indicators shall be clearly labelled (red letters on white background, not less than 3 mm high) to show operating positions and systems served.

 (f) A further label shall be provided with letters not less than 6 mm high stating that the controls shall be operated by authorised personnel.

 (g) All labels shall be permanent, legible and firmly secured (adhesive is not satisfactory) and shall be lettered in both English and Chinese by engraving or similar.

 (h) Simplified schematic diagram for all smoke extraction systems shall be provided adjacent to the smoke extraction control panel.

L. **ELECTRICAL AND AUTOMATIC CONTROLS**

L. 1 All systems shall be as simple as possible. Complex and untried electronic devices shall not be used.

L. 2 All equipment serving smoke extraction and complementary air make-up systems shall be provided with an electrical supply from essential source.

L. 3 Cable routes shall be selected in such a way as to protect them from a fire anywhere in the building and to reduce likelihood of failure due to external mechanical, electrical, or physical, effects.

L. 4 All electrical wiring, controls, starters, relays, etc. shall be suitable for continuous operation at 250 deg. C for 1 hour. Where pneumatic controls are used these shall be similarly rated. All
wiring from the building primary and secondary source of supply for these systems shall comply with these requirements.

However, the following situations are acceptable:—

(a) Provided the main switchboard is of a type tested, cubicle form, constructed to British Standard 5486 from not less than 2 mm panel steel and is installed in a room having an F.R.P. (including self-closing doors) of not less than 2 hours and containing no other equipment, no further protection will be required for this switchboard. Also no further protection will be required for wiring, cables, or other electrical equipment.

(b) Sub-distribution boards and/or motor control centres constructed and installed as in (a) are similarly acceptable.

L. 5 P.V.C. or similar material shall not be used for pneumatic system tubing or components.

L. 6 All controls and equipment utilised shall be of industrial grade—controls of normal commercial heating, ventilation and air-conditioning quality shall not be acceptable.

M. STANDBY OR DUPLICATE EQUIPMENT

M. 1 In all premises where sleeping normally occurs all fans, motors, drives, starters, etc., shall be installed in duplicate with automatic changeover facilities, should one unit fail to operate for any reason. Each fan/motor/drive set shall be capable of operation on essential electrical supplies (as required for para. L.2). This shall be achieved by the two electrical supplies being routed separately into the fan room and then connected into the switchboard, which serves the fan/motor/drive sets. This switchboard must also be located in the fan room.

M. 2 In premises where dual purpose systems are utilised, duplicate plants as detailed in para. M.1 above shall be provided.

(ii) STATIC SYSTEM

A. SMOKE BARRIER

(a) The smoke barrier may be permanently fixed or operate only when activated.

(b) The smoke barrier shall be constructed of substantial non-combustible materials that will resist the passage of smoke and have an F.R.P. of not less than 1 hour when tested to British Standard 476 Parts 20 to 23 inclusive.

(c) Where a smoke barrier consists of a number of separate units, care shall be taken to ensure smoke resistant junctions or joints. This is particularly necessary when using flexible materials.

(d) For “below ground” compartments the smoke barrier shall extend to a depth of 800 mm below the lowest beam, obstruction, window head or top of vent opening situated in the compartment.

For “above ground” compartments the smoke barrier shall extend to a depth of 500 mm below the lowest beam, obstruction, window head or top of vent opening.

(e) The lowest portion of the smoke barrier, when in the fire position, shall be not less than 2 000 mm above the finished floor.

(f) If not permanently fixed, the moving parts and any operating mechanism shall be suitable for atmospheric conditions of 35 deg. C and 100% R.H. unless the space is permanently air conditioned. If the space is to be used for any particular process the parts and mechanisms shall be suitable for the most adverse conditions likely to be encountered.

(g) All movable smoke barriers shall be arranged to “fail safe”. That is to move to the “barrier down” position on power failure or any other fault.

(h) For services, passing through the smoke barrier, having maximum cross-sectional dimensions of 100 mm W×100 mm H, no fire/smoke stopping shall be required, all building and to reduce likelihood of failure due to external mechanical, electrical, or other services shall be fire/smoke stopped.

(i) Smoke curtain systems used shall comply with the British Standard 7346 Part 3 and British Standard 476 Part 20.

(j) The smoke zone should not exceed 2 000 square metres in area.
Note: Large sized services in the smoke reservoir shall not interfere with the effectiveness of the static smoke extraction system for that reservoir.

B. SMOKE DISCHARGE

(a) The smoke discharge may be permanently open or open only when the system activates.

(b) The free area of the smoke discharge is required to be not less than 2% of the floor area served by the system. Of this not less than half shall be permanently open or automatically actuated.

(c) If permanent openings are provided, signs shall be permanently displayed on or adjacent to the openings on the inside of the building with the following wording in both English and Chinese:

```
THIS OPENING IS A SMOKE VENT
DO NOT COVER OR CLOSE
```

(d) The lettering shall be not less than 25 mm high, red on a white background. One notice shall be provided for every 3 square metres of opening or at not more than 4 m spacings, whichever is the lesser.

(e) Openable discharges may open by gravity after a release is actuated or opened by a suitable mechanical or electrical device (operating devices).

(f) Openable discharges shall be provided with high quality mechanisms and operating devices to suit, at least, the environmental conditions given under para. A. (f) hereof.

(g) The operating devices for openable discharges shall be manufactured by a recognised reputable manufacturer with not less than two years experience in the production of such devices.

(h) The operating devices shall be to the approval of the Fire Services Department.

(i) All discharges shall be arranged to be “fail safe”.

(j) If considered necessary by the designer, manual operating devices may be provided for automatically openable discharges provided such operation does NOT interfere with automatic operation.

(k) The sections of discharges not required to be operated automatically shall be provided with easily operated and accessible quick release operating devices fixed at a height above floor not exceeding 1 800 mm. The minimum possible number of operating devices is desirable.

(l) All discharges shall be provided with signs as described under para. (c) hereof except the wording shall be:

```
THIS OPENING IS A SMOKE VENT
DO NOT COVER OR OBSTRUCT
```

C. ACTUATION AND OPERATION

(a) Systems with permanently fixed smoke barriers and permanently open discharges require no actuation.

(b) All other systems shall be actuated by smoke detectors installed in accordance with the requirements of the Fire Services Department.

(c) It is recommended that a cross-zoned system be utilised for the smoke detectors to reduce false alarms, especially under industrial conditions.

(d) The smoke detector installation may be zoned, at the discretion of the designer, to serve only one smoke compartment or several smoke compartments.

(e) Electrical supplies for the automatic operating devices/actuators where necessary for operation and for the detector installation shall be provided with an approved secondary...
source i.e. batteries or emergency generator where electrically operated or a pressure receiver having a capacity double that required to operate all units once, if air actuated.

5.24 Sprinkler system

SPECIFICATION

Such systems shall be designed and installed in accordance with the Loss Prevention Council Rules for Automatic Sprinkler Installations (with suitable modification pertinent to Hong Kong) or other standards acceptable to the Director of Fire Services.

For the avoidance of doubt, a system is deemed to commence at the point of entry, to the building, of the pipework.

(See Water supply—Section 5.30)

5.25 Street fire hydrant system

SPECIFICATION

All hydrants should be installed in accordance with the Water Supplies Department Standard Mainlaying Practice or other standards acceptable to the Director of Fire Services.

Spacing between fire hydrants should be 100 meters staggered on alternative sides of the roadway wherever applicable.

Wherever possible, there should be at least two street fire hydrants within the site of the building concerned and they should be fixed not less than 6 metres from the building they are intended to protect.

The valve spindle is ideally 250 mm below pit cover and in any case should not be more than 500 mm.

The hydrant shall be of an accepted standard pattern and, with one 65 mm outlet working, shall be capable of delivering not less than 2,000 litres per minute (33.3 litre/second) with a minimum running pressure of 170 kPa at the outlet. The minimum output and pressure should be made available from two 65 mm outlets of a system delivering at the same time, i.e. a total output of not less than 4,000 litres per minute (66.7 litre/second).

Where the minimum standards are not possible the water supply may have to be augmented by other means – e.g. sump tank and pumps. This will depend on the size and nature of the property to be protected, together with total available supply.

5.26 Supply tank

SPECIFICATION

Supply tank for fire hydrant and hose reel installation of adequate capacity shall be provided when a wet system is installed in a building.

The tank shall be fed from such source of supply approved by the Water Authority and the Director of Fire Services.

The tank may be used for the combined storage of domestic (e.g. flushing) and fire fighting water provided that the maximum potential draw off by domestic services can in no way diminish the supply for fire fighting below the required reserve.

The minimum effective quantity of water required to be available, having regard to the floor area factor of the largest floor is as follows:

<table>
<thead>
<tr>
<th>Floor area (gross)</th>
<th>Water storage required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not exceeding 230 m²</td>
<td>9 000 L (9 m³)</td>
</tr>
<tr>
<td>Over 230 m² but not exceeding 460 m²</td>
<td>18 000 L (18 m³)</td>
</tr>
<tr>
<td>Over 460 m² but not exceeding 920 m²</td>
<td>27 000 L (27 m³)</td>
</tr>
<tr>
<td>Over 920 m²</td>
<td>36 000 L (36 m³)</td>
</tr>
</tbody>
</table>
A non-ferrous non-return valve to be provided between the downcoming main and the fixed fire pump.

5.27 Ventilation/air conditioning control system

SPECIFICATION

“Ventilation/air conditioning system” refers to a mechanical ventilating system defined as follows:—

Any air moving system, with the exceptions as listed hereunder, utilizing both a fan and duct, to mechanically force air into, around, or out of, any building or part thereof and includes systems which contain devices for reducing or increasing the temperature and/or humidity of the air inside any building, or part thereof, below or above the temperature of the external air for the purpose of environmental control.

The following mechanical ventilating systems shall be exempted from these requirements:—

(a) Any mechanical ventilating system forming part of the Fire Service Installations and installed solely for fire protection or fire fighting purposes i.e. staircase pressurization system and smoke extraction system.

(b) Individual, self contained or split type, direct expansion room cooling units not connected to ductwork systems.

(c) Minor mechanical ventilating systems which comply with ALL of the following criteria:—

1. all air distribution ductwork systems are contained within the same compartment.
2. the air flow rate handled by each air distribution ductwork system does not exceed 1000 litres per second.
3. Mechanical ventilating systems handling toxic gas or grease/air mixtures i.e. fume cupboard ventilation, kitchen ventilation, systems handling toxic gases/explosive gases, etc.
4. Mechanical ventilating systems where all air is supplied at low level and/or extracted (not recirculated) at high level.
5. Individual plant rooms, and individual toilets which are mechanically ventilated directly (i.e. ventilating system not serving other areas) to outside.

The objective of this requirement is, in the event of fire, to reduce air movement within the affected compartment i.e. to allow smoke to rise and form a layer at ceiling level which will not be disturbed by the introduction of air into that smoke layer.

Any one of the following methods of override control shall be used:—

Method “A” — If the compartment/unit is provided with a smoke detector automatic fire alarm system, on activation of that system all fans serving the compartment shall be shut down.

Method “B” — Smoke detectors of a type suitable for use in air ducts, shall be installed in the exhaust and/or recirculation ductwork serving the compartment/unit, which on sensing smoke, will automatically shut down all fans in the mechanical ventilating system serving the compartment/unit.

Method “C” — The override control can be arranged to completely shut down all the fans in the building instead of isolated compartments/units, but this could lead to inconvenience for the building users. The actuation shall be provided by the building fire alarm system.

If the designer wishes the override control can, in addition, also be actuated by the sprinkler system.

In addition to Method “A”, Method “B” or Method “C”, manual override switch(es) shall be provided at the central fire control panel to allow the engineering staff of the Building Operator, or the Fire Services Department personnel, to switch off the fans for all the mechanical ventilating systems serving the building in the event of an emergency.

Notes:

(a) For buildings where central mechanical fresh air supply and/or exhaust systems are installed, either
(1) the central fresh air supply and/or exhaust system shall be shut down, or
(2) the central fresh air supply and/or exhaust system shall not require to be shut down but the fresh air and/or exhaust to the affected compartment/unit shall be closed off from the central system by actuation of a local motorised smoke damper.

(b) Shut down of the mechanical ventilating systems utilizing a multiplex automatic fire alarm or Building Automation System shall be permitted so long as the multiplex system is on the Fire Services Department list for this type of equipment/system.

5.28 Water mist system

SPECIFICATION

Such systems shall be installed in accordance with the standards acceptable to the Director of Fire Services. Reference is made to NFPA 750/2000 Edition.

Prior approval for the use of such system shall be obtained from the Director of Fire Services, and the water mist system must have been listed.

The protection objectives and installation design shall be endorsed by a qualified person, who should be a registered Professional Engineer under Cap. 409 in the discipline of building services or mechanical engineering, or one with qualifications acceptable to the Director of Fire Services, e.g. the system manufacturer.

The acceptance of water mist system is on project basis, and initially its application is limited to protection of mechanical plant rooms.

5.29 Water spray system

SPECIFICATION

Such systems shall be installed in accordance with the standards acceptable to the Director of Fire Services.

5.30 Water supply

SPECIFICATION

All fixed systems using water will be served by water from at least two supplies to the satisfaction of the Director of Fire Services and Water Authority.

The types of supply as listed in Loss Prevention Council Rules are acceptable EXCEPT

(a) Town main with either a pressure tank, gravity tank or elevated private reservoir;
(b) Town mains with automatic pump.

However, due to possible disruption of water supplies from town mains during water restriction periods, unless the town main is on 24 hour supply, provision must be made to guarantee 30 minutes stored supply, the town main feeding the storage tank.

Means shall be provided to refill the supply tank automatically. If the tank is situated at upper level of building and a transfer pump is required to relay water to the tank, the pump capacity shall be able to refill the tank to its full capacity within 6 hours. The transfer pump shall be powered by essential power supply.
CODE OF PRACTICE
FOR
INSPECTION, TESTING AND MAINTENANCE
OF INSTALLATIONS AND EQUIPMENT
CODE OF PRACTICE FOR INSPECTION, TESTING AND MAINTENANCE OF INSTALLATIONS AND EQUIPMENT

PRELIMINARY NOTE

Pursuant to Section 21(6)(d) of the Buildings Ordinance, the Building Authority may refuse to issue a temporary occupation permit or an occupation permit where in the case of a building the plans whereof were certified by the Director of Fire Services in the terms indicated in Section 16(1)(b)(ii) of the Buildings Ordinance, the applicant for the permit fails to produce to the Building Authority a certificate from the Director of Fire Services in such form as may be prescribed certifying that he is satisfied that the fire service installations and equipment shown on the plans aforesaid have been provided and are in efficient working order and satisfactory condition.

This Code of Practice for Inspection, Testing and Maintenance of Installations and Equipment is published in accordance with Regulation 10 of the Fire Service (Installations and Equipment) Regulations of the Fire Services Ordinance, Cap. 95 to indicate the type and nature of inspections and tests which installations and equipment must normally pass in order to satisfy the Director of Fire Services and to give guidance as to the conduct of inspections and tests. It does not lay down any hard and fast rules. Special factors and circumstances may require variations in respect of any particular building, and in particular case the Director may require additional inspections or tests before he is so satisfied.

Part I GENERAL

1.1 Inspection and acceptance testing shall be carried out by a Fire Services Inspecting Officer by arrangement with the Authorized Person and the registered fire service installation contractor.

1.2 Applications for initial inspection and testing should be made on the prescribed form to the Director of Fire Services. The form must be signed by both the registered fire service installation contractor and the Authorized Person.

1.3 An application should only be submitted by the Authorized Person when the installation and equipment has been installed, completed and certified as being in efficient working order by the registered fire service installation contractor.

1.4 Upon receipt of an application the Fire Services Inspecting Officer will contact the Authorized Person (not the registered fire service installation contractor) at the telephone number shown on the prescribed form, and arrange a mutually convenient inspection date. The Authorized Person, as the co-ordinator of the project, should attend the inspection and it is also his responsibility to contact and inform the registered fire service installation contractor of the arrangements made.

1.5 A further prescribed form will be used to record the result of the inspection and will be completed and signed on site by the Fire Services Inspecting Officer. The Authorized Person and the registered fire service installation contractor will also be required to sign this form confirming that the results of the inspection have been brought to their attention.

1.6 In respect of minor items requiring a further inspection the Authorized Person will, after the defects have been rectified, arrange a re-inspection date with the Senior Building Services Inspector, Fire Service Installations Division. A further formal application for inspection on the prescribed form will only be required when a refusal letter has been issued subsequent to an inspection.

1.7 Re-inspections will be carried out as convenient, subject only to the availability of Inspecting Officer and provided that previous confirmed appointments are not affected.

1.8 Subsequent to a satisfactory inspection, the Authorized Person will be notified by telephone as soon as the Fire Services Certificate (F.S. 172) is ready for collection. If unable to be contacted by telephone a “ready for collection” letter will be despatched.

1.9 The Certification of Completion by Water Authority in respect of fire service installations requiring Government water mains connection will be sent direct to the Building Authority by the Water Authority, copied to the applicant, after the installation has been inspected and approved by the Water Authority and the fire service connection completed.

1.10 The fire service installations for a building for which a temporary occupation permit or occupation permit has been issued must be maintained, inspected and certified by a registered fire service installation contractor at least once in every 12 months.

1.11 The certificate for annual inspection of fire service installations together with a list of the fire service
Installations and equipment should be displayed in a prominent area of the building by the registered fire service installation contractor in consultation with the owner or building management.

1.12 Design engineers and registered fire service installation contractors should advise the owner of the building, or his agent that any fire service installation or equipment (such as the staircase pressurization system etc.), which would normally be left in idle or standby conditions except in case of fire, should be actuated and checked by the owner or his agent at an interval of not more than three months to ensure that the installation or equipment are functioning and sequencing correctly.

1.13 For any shut-down of building Fire Service Installations (FSI) overnight or over 24 hours, Fire Service Installation Contractors shall notify Fire Services Department by fax using the prescribed form in APPENDIX 7 preferably 7 days in advance. In addition, the following guidelines shall be observed:

a. Residents/occupiers/management companies to be notified beforehand and informed of any temporary measures to be taken;
b. Whenever possible, water tanks shall be topped up prior to commencement of repair/maintenance works;
c. Whenever shut-down on take-up and operation, Fire Service Contractors shall maintain the pressure up to the minimum. Any undue delay on the works would result in fire hazard abatement action;
d. As far as practicable, repairs works shall be so located that they should ensure the building FSI remain partially functional. A shut-down of the whole system in such a period would be inadvisable;
e. In case the whole system has to be suspended, stand-by means such as fire extinguishers shall be provided at suitable locations. Fire Services Department/residents/occupiers/management company, where appropriate, shall be notified of the arrangement.

Part II INSPECTION, TESTING AND MAINTENANCE

2.1 Audio/visual advisory system

(i) Acceptance Testing

The system shall be tested in a simulated alarm condition to verify the proper operation and functioning of the audio and visual alarm signals and alarm directives to the satisfaction of the Director of Fire Services.

(ii) Maintenance

The system shall be maintained in efficient working order at all times and shall be inspected by a registered fire service installation contractor at least once in every 12 months.

A weekly visual and audio check of all signals should be carried out by the owner or his agent. The system should also be checked in any fire drill.

2.2 Automatic actuating devices

(i) Acceptance Testing

For fire shutters, roof vents or similar installations, the actuating devices shall be tested to confirm that the designed complete closure or compartment separation of the driven shutters/equipment can be achieved within the time specified.

The testing of automatic actuating devices for fire shutters shall be carried out in accordance with the checklist as laid down at APPENDIX 1. The testing for other similar installations shall be in accordance with the manufacturer’s recommendations and other standards as may be prescribed by the Director of Fire Services on account of specific features of the installations.

(ii) Maintenance

The components and devices shall be maintained in efficient working order at all times and shall be inspected by a registered fire service installation contractor at least once in every 12 months.

The fire shutters or roof vents should be regularly checked by the owner or his agent for proper operation in both manual and automatic modes.
2.3 Automatic fixed installation other than water

(i) Acceptance Testing
CO₂, FM200 and other similar clean gas extinguishing system shall be checked and tested in accordance with the checklist as laid down at APPENDIX 2 and by direct and/or remote control sequences in accordance with test procedures as laid down in the NFPA Standard 2001 or other acceptable international standard as agreed by the Director of Fire Services.

(ii) Maintenance
The system shall be maintained in efficient working order at all times and be inspected by a registered fire service installation contractor at least once in every 12 months.

2.4 Automatic fixed installation using water
These may include:
- Deluge system
- Drencher system
- Sprinkler system
- Water mist system
- Water spray system

Acceptance testing and maintenance for the above are described in the respective sections.

2.5 Deluge system

(i) Acceptance Testing
The system shall be tested in accordance with the manufacturer’s recommendations and other requirements as may be prescribed by the Director of Fire Services on account of specific features of the system.

(ii) Maintenance
The system shall be maintained in efficient working order at all times and shall be inspected by a registered fire service installation contractor at least once in every 12 months.

2.6 Drencher system

(i) Acceptance Testing
The system shall be tested to demonstrate the satisfactory performance including water flow rate, working pressure, water spraying pattern, means of actuation and other requirements as may be prescribed by the Director of Fire Services on account of specific features of the system.

(ii) Maintenance
The system shall be maintained in efficient working order at all times and shall be inspected by a registered fire service installation contractor at least once in every 12 months.

2.7 Dust detection system

(i) Acceptance Testing
The system shall be tested in accordance with the manufacturer’s recommendations and other requirements as may be prescribed by the Director of Fire Services on account of specific features of the system.

(ii) Maintenance
The system shall be maintained in efficient working order at all times and shall be inspected by a registered fire service installation contractor at least once in every 12 months.
Tests appropriate to the system should be carried out by the owner or his agent at intervals as recommended by the equipment manufacturer and agreed with the Director of Fire Services. If
the system is capable of being actuated manually, such manual actuation should be tested to confirm subsequent operations.

2.8 Emergency generator

(i) Acceptance Testing

On completion of the installation a full test of the fire service installations in a building or premises shall be carried out, with all systems connected to the ‘normal’ electricity supply.

Upon satisfactory testing of the fire service installations on ‘normal’ electricity supply, the ‘normal’ electricity supply shall be switched off, and the emergency generator shall start automatically.

When the emergency generator has gained its capacity and is ready to accept the fire service installations load, each fire service installation shall be switched on until all installations are in operating conditions. A ‘simultaneous running’ test shall then take place and shall last for a continuous period of one hour. During this period the performance of each fire service installation shall be monitored.

After one hour of testing, the emergency generator set shall be examined and all instruments, safety devices, etc. shall indicate ‘normal’ running of the generator.

A checklist for testing of emergency generator installation is enclosed at APPENDIX 3.

(ii) Maintenance

The emergency generator shall be maintained in efficient working order at all times and shall be inspected by a registered fire service installation contractor at least once in every 12 months.

Moreover, all units should be run once per month under load conditions for a period of not less than 30 minutes by the owner or his agent. During this running period all operating conditions should be checked. Following this running period functional tests should be carried out on all automatic and manual starting devices and safety controls.

A log book should be provided, and retained in the plant room, management office or building supervisor office, and should be kept up to date by the owner or his agent. The record should be made at the time of occurrence and should include details of all operations; faults and corrective actions taken, routine servicing, maintenance and periodic operation etc.; including dates, times, hour meter readings, workers/supervisors names and signatures, etc. for the unit, batteries, compressors, etc.

Further routine testing and maintenance for a particular installation may be required by the Director of Fire Services.

Fuel tanks shall be refilled to full after testing.

2.9 Emergency lighting

(i) Acceptance Testing

Tests shall be carried out in accordance with British Standard 5266 : Part 1 and BS EN 1838 or in such manner as may be prescribed by the Director of Fire Services on account of specific features of the equipment.

(ii) Maintenance

All emergency lighting shall be maintained in efficient working order at all times and shall be inspected by a registered fire service installation contractor at least once in every 12 months. The following maintenance procedures should be arranged by the owner or his agent:

a. Once every month a discharge test, for 1 minute at the 10-hour discharge rate, should be carried out on the battery of the emergency lighting, and the results should be entered in a register. The on-load voltage of each cell after this test should be not less than 2.01 volts for
lead acid and 1.25 volts for Nickel Cadmium battery.

b. For emergency lighting supplied by central battery systems with control and safety devices installed, the systems should be regularly checked for the following:

(1) Connections between the battery and the source of charging current should be such that in no circumstances should the battery discharge other than to the secondary lighting circuits.

(2) A rectifier for battery charging should be for that purpose only and should be so regulated that the battery cannot discharge appreciably under normal conditions.

c. Voltage and hydrometer tests should be carried out weekly and recorded in a register.

2.10 Exit sign

(i) Acceptance Testing

Tests shall be carried out in accordance with British Standard 5266: Part 1 or in such manner as may be prescribed by the Director of Fire Services on account of specific features of the equipment.

(ii) Maintenance

All exit sign shall be maintained in efficient working order at all times and shall be inspected by a registered fire service installation contractor at least once in every 12 months. Moreover, exit sign should be tested whenever an emergency lighting system is tested.

2.11 Fire alarm system

(i) Acceptance Testing

Manual fire alarm call points shall be tested together with automatic fire alarm when the whole system is required to be tested in accordance with the appropriate standards as required by the Director of Fire Services. Upon actuation of the manual alarm call points, alarm bells in all or designated zones, other audible/visual alarm signals, fire services link, and hydrant/sprinkler water pumps etc. shall be activated. Audibility of alarm bell sound shall be checked at hindered locations of the building/premises.

(ii) Maintenance

The system shall be maintained in efficient working order at all times and shall be inspected by a registered fire service installation contractor at least once in every 12 months.

Manual fire alarm points should be tested when the whole system is required to be tested in accordance with the appropriate standard.

Attention is drawn to Regulation 38 of the Education Regulations, Chapter 279 in respect of fire alarm testing and fire drills in schools.

2.12 Fire control centre

(i) Acceptance Testing

Testing of the fire control panels shall be carried out as part of the testing for various fire service systems in accordance with the appropriate standards or codes as outlined elsewhere in this Code.

Visual check on the integrity of room enclosures for compartmentation with respect to Fire Resisting Period shall be required. Appropriate certificate by the Authorized Person for the Fire Resisting Period of the materials/structure should be provided during inspection. Check shall be made on the ready visibility and accessibility of the control panels with regards to the room layout and security fixtures.

(ii) Maintenance
Routine check of the provisions such as power supply, lighting and tidiness inside the control centre should be carried out by the owner or his agent.

2.13 Fire detection system

(i) Acceptance Testing

(ii) Maintenance

The installation shall be maintained in efficient working order at all times and shall be inspected by a registered fire service installation contractor at least once in every 12 months.

The direct line connection should be tested once every 2 weeks or at such time and interval as agreed by the Director of Fire Services.

2.14 Fire hydrant/hose reel system

(i) Acceptance Testing

The system shall be tested in accordance with the checklist laid down at APPENDIX 5.

(ii) Maintenance

The installation shall be maintained in efficient working order at all times and shall be inspected by a registered fire service installation contractor at least once in every 12 months.

The owner or his agent should carry out regular checks to ensure the hydrant/hose reel nozzles, valves, fittings etc. remain intact at all times and are not damaged or misused for other purposes.

2.15 Fire resisting cables for fire service installations

(i) Acceptance Testing

The cables will be accepted as part of the fire service installation. Certificate of compliance of relevant standards may be required upon request.

(ii) Maintenance

The fire resisting cables are considered as integral part of the fire service installation and shall be inspected and maintained in safe and satisfactory condition by a registered fire service installation contractor when inspection to the relevant fire service installation is carried out.

2.16 Fireman’s lift and firefighting and rescue stairway

(i) Acceptance Testing

Fireman’s lift shall be tested by a registered lift engineer in accordance with the requirements stipulated in the Code of Practice on the Design and Construction of Lifts and Escalators issued by the Director of Electrical and Mechanical Services.

(ii) Maintenance

Fireman’s lift shall be maintained in efficient working order at all times and in accordance with the requirements stipulated in the Code of Practice for Lift Works and Escalator Works issued by the Director of Electrical and Mechanical Services.

2.17 Fixed automatically operated approved appliance

(i) Acceptance Testing

These types of fire extinguishing appliances, either of self-contained operating type or of alarm
signal actuating type, shall be tested in accordance with the manufacturer’s recommendations or other requirements as may be prescribed by the Director of Fire Services on account of specific features of the appliances.

A check on the content weight shall be made either by weighing or by reference to a pressure gauge or other gauge which may be installed as part of the appliances.

(ii) Maintenance
The installation shall be maintained in efficient working order at all times and shall be inspected by a registered fire service installation contractor at least once in every 12 months.

2.18 Fixed foam system

(i) Acceptance Testing
The testing procedures shall be in accordance with the manufacturer’s recommendations for various items/equipment of the system, and shall be in accordance with the appropriate international standard or other requirements as may be prescribed by the Director of Fire Services on account of specific features of the system.

(ii) Maintenance
The installation shall be maintained in efficient working order at all times and shall be inspected by a registered fire service installation contractor at least once in every 12 months.

2.19 Gas detection system

(i) Acceptance Testing
The system shall be tested by allowing sufficient amount of the gas to be released across the detection point and to confirm the proper activation of the detector and efficient operation of all ancillary alarm procedures. Testing shall be carried out in accordance with the manufacturer’s recommendations and the appropriate international standard or as required by the Director of Fire Services on account of specific feature of the system.

(ii) Maintenance
The installation shall be maintained in efficient working order at all times and shall be inspected by a registered fire service installation contractor at least once in every 12 months.

2.20 Portable hand-operated approved appliance

(i) Acceptance Testing
Apart from visual inspection, no specific testing is required. The appliances shall be inspected and certified in efficient working order by a Class 3 registered fire service installation contractor.

(ii) Maintenance
The appliances shall be maintained in efficient working order at all times and shall be inspected by a Class 3 registered fire service installation contractor at least once in every 12 months.

The tests for portable hand-operated approved appliances shall be carried out periodically in accordance with the appropriate standard and the manufacturer’s recommendations.

The guidelines on portable hand-operated approved appliances maintenance is enclosed at Appendix 8.

These guidelines are also published in the Fire Protection Notice No. 11 “Notes on Fire Extinguishers (Suitability and Maintenance)”.

(iii) Maintenance Label
All portable extinguishers shall be provided or stick with a label after maintenance as per the sample in Appendix 8. The purpose of this maintenance label is to provide and update all relevant
information on the equipment after maintenance.

The label shall not be affixed over the original manufacturer’s label on the equipment body, thus covering the name, model and reference number of that equipment.

Indelible and permanent ink shall be used to fill in the label.

Registered FSI contractors are reminded that only portable equipment approved by this Department and listed in the HKSAR Gazette may be installed, and unless the equipment can be readily identified as being approved and listed, the Fire Services Certificate (FS 172) shall not be issued.

Notes on Portable Equipment Maintenance Label
(Including fire extinguisher, fire blanket, sand bucket and fixed type extinguisher)

1. **Company Name**
 Either the name of the company or the company chop should be printed on the space provided. If company name is not applicable, “NA” should be entered and should not be left blank.

2. **Registration No.**
 The registration number of the Class 3 Fire Service Installation Contractor responsible for the maintenance of the portable equipment should be filled in.

3. **F.S. 251 No.**
 The number of the relevant Certificate of Fire Service Installation and Equipment (F.S. 251) should be filled in.

4. **Maintenance Date**
 This date means the date when the maintenance of the portable equipment is completed. It should be the same date as shown on the Certificate (F.S. 251).

5. **Next Maintenance**
 This date means 12 months later and should be counted from the date of the last maintenance. If within 12 months period, the fire extinguisher is required to have pressure test, then the date of pressure test should be filled in.

 Example: Maintenance Date : 5.9.2003
 Last Pressure Test : 10.7.1999 (pressure test is required for every 5 years intervals)
 Next Maintenance : 10.7.2004 (not 5.9.2004)

6. **Last Pressure Test**
 The date shown on the last year’s label should be filled in the new label. If last year’s label becomes dilapidated or the date cannot be seen when carrying out the maintenance works, the condition of the extinguisher body should be checked to ascertain whether a pressure test is required. If the year of manufacture shown on the extinguisher body exceeds 5 years with no record of pressure test, pressure test should be carried out instead of merely replacing the parts or extinguishing medium.

 (For fire blankets and sand buckets, “NA” should be filled in.)

7. **Year of Manufacture**
 According to all standards accepted by this Department from different countries, the year of manufacture must be permanently marked or stamped on the extinguisher body. So the year of manufacture can be checked out from the body. If there is only 2 digits, it means the last 2 digits of the year of manufacture, e.g. 99 means manufactured in 1999. For those non-high
pressure extinguishers (25 bars below) manufactured according to Malaysian Standard MS1179:1990, it only requires the year of manufacture be clearly marked on the body, but for those Malaysian products manufactured according to BS EN-3, permanent marking or stamp for year of manufacture is shown on the extinguisher body.

(For fire blankets and sand buckets, “NA” should be filled in.)

8. Maintenance Result

If the maintenance procedures for this inspection cannot be fully completed in accordance with the guidelines in this Code and attained a satisfactory result, it should not be treated as “PASS”. A cross by using two straight lines to join the opposite corners in the square for “FAIL” should be marked, e.g. ☒ means fail. Particulars of defects must be listed in Part 3 of the relevant Certificate of Fire Service Installation and Equipment (F.S. 251).

Remarks:

Other than fire services licensing requirement or fire services requirement for new buildings, if the portable equipment is a new one, which can be readily used without assembly or filling of extinguishing media, and its year of manufacture shown on the body does not exceed one year, a Certificate of Fire Service Installations and Equipment (F.S. 251) is not required. The relevant purchase receipt should be retained for future identification. In case the year of manufacture of the portable equipment exceeds 12 months (i.e. 1 year) or the extinguisher requires assembly or refilling, then the portable equipment should be inspected by a Registered Fire Service Installation Contractor and a Certificate of Fire Service Installations and Equipment (F.S. 251) be issued to prove its function.

2.21 Pressurization of staircase

(i) Acceptance Testing

1. Where interaction with other systems is part of the designed operational mode, all such systems shall be correctly functioning before a final fire services inspection takes place.

2. ‘Completion’ shall include all necessary permanent labels, instruction plaques, fully detailed operating and maintenance manuals and diagrams, record ‘as built’ drawings, etc.

3. Ensure tests required under para. B.4 of Section 5.21 of the Code of Practice for Minimum Fire Service Installations and Equipment are carried out, recorded and record certified.

4. All systems are to be completed and tested and the designer is to satisfy himself that they are functioning correctly before the final full test and demonstration takes place with the Fire Services Inspecting Officers in attendance. A full set of test and functional operation check records (see para. 8 hereof) shall be submitted with the request for the attendance of the Fire Services Inspecting Officers. Accompanying the records shall be a certificate signed by the designer on behalf of the design company or organization confirming or otherwise that he is satisfied that the installations are operating in accordance with his design and the requirements of the Fire Services Department.

5. Acceptance tests shall be carried out in accordance with British Standard 5588: Part 4. It is necessary for the designer to be present at the tests.

6. It is preferable that the format/method of the required operational and functional test be agreed with Fire Services Department before any such work commences.

7. Except for simple devices such as pitot-static tubes, inclined manometers, U gauges and the like all instruments, meters, etc. used for testing purposes shall:-

 a. be provided in duplicate;

 b. have a manufacturer’s claimed accuracy of not more than plus or minus two percent of range;

 c. be manufactured to an appropriate British Standard or recognized equal international or
national standard where appropriate and available; and

d. have been calibrated by a recognized testing or calibration laboratory not more than 3 months prior to the date of test. The calibration certificate provided by the laboratory shall be available during the test.

8. Full and complete records are to be taken of all the tests and the results thereof including not less than:

a. records of pressure testing during construction—see para. B.4 of Section 5.21 of the Code of Practice for Minimum Fire Service Installations and Equipment;

b. make, serial no., type and owner of all instruments used, with a copy of the calibration certificates;

c. actual measurements taken;

d. corrected measurement from (c) above;

e. resulting air flows;

f. make, serial no., type and use of every device checked;

g. date and time of test;

h. signature of operator/tester or supervisor and any witness for each test; and

i. signature of acceptance of and by the designer.

(ii) Maintenance

1. For systems that only operate in an emergency (i.e. single stage systems), they should be actuated by the owner or his agent at an interval of not more than three months, and checked to ensure that all functions and sequences are operating correctly. (See para. 3 below)

2. For systems that operate continuously at a low level and at an increased level in an emergency (i.e. two stage systems), they should be actuated into emergency mode by the owner or his agent at not more than six monthly intervals and checked to ensure that all emergency functions sequence and operate correctly. (See para. 3 below)

3. Periodic actuations should include, at least, the following actions:-

a. activate system by manual switch;

b. check that indicator lights give correct signals;

c. inspect staircase to ensure all doors are closed especially if magnetically held doors are utilized;

d. full inspection of fan rooms including:

 (i) fresh air inlet to be clear of debris and area in front to be free of obstruction;

 (ii) filters (if provided) correctly in place and not at end of useful life;

 (iii) to check any flexible connections for deterioration;

 (iv) motor operating satisfactorily; (not overheating, etc.)

 (v) belt drive with correct belt tension and alignment or other type of drive functioning correctly;

 (vi) fan bearings satisfactory;

 (vii) electrical equipment satisfactory (no contactor hum, etc.);

 (viii) record motor currents on each phase;

 (ix) no significant air leaks;

 (x) to check operation of pressure relief or fan by-pass dampers (and indirectly, pressure
sensor) by opening and closing staircase entry door or door(s);

(xi) to check plant room for free of debris, stored materials, etc., and

(xii) to check fan room entry door self closers.

e. throughout the staircase, a check should be conducted to ensure that air is discharging from all outlets and that pressure sensor is clean and free from obstruction.

f. to deactivate the manual switch and restore automatic mode;

g. to record actions progressively, and to complete and sign record logs.

4. In addition to the foregoing, at intervals not exceeding 12 months, the system shall be actuated and a full test shall be carried out as described under Section 2.21(i) hereof, by a registered fire service installation contractor and a maintenance certificate shall be sent to the Director of Fire Services; and

5. A record log should be maintained by the owner or his agent for each and all systems providing a complete record of the actions carried out under para 1 to 4 hereof and the results thereof under signature of the supervisor and witness. Records should be retained for a period of at least seven years and shall be made available at any reasonable time at the request of the Director of Fire Services or his representative.

2.22 Ring main system with fixed pump(s)

(i) Acceptance Testing

The system shall be tested to demonstrate its satisfactory performance including tests on the operation of the pumps, and on the water flow rate and working pressure of the street hydrants etc., and such other tests and inspections as may be prescribed by the Director of Fire Services on account of specific features of the system.

(ii) Maintenance

The installation shall be maintained in efficient working order at all times and shall be inspected by a registered fire service installation contractor at least once in every 12 months.

The fixed pump should be tested by the owner or his agent monthly on both the automatic and manual start.

The system should be examined to ensure that pipework and hydrant outlets are in good working order.

2.23 Smoke extraction systems

Where hot smoke test is required, the followings shall be observed:-

a. Salient points for the test:-

 (i) The temperature of simulated hot air plume should be maintained at about 10°C below the temperature rating of the ceiling sprinklers to avoid any unwanted actuation of sprinklers or damage to building structures and finishes;

 (ii) The size of the test fire should be at least 1 MW or of such size as agreed by the Director of Fire Services;

 (iii) Non-contaminating industrial grade methylated spirit may be used subject to the agreement of the Director of Fire Services;

 (iv) Non-toxic oil based smoke produced by smoke generator may be used subject to the agreement of the Director of Fire Services;

 (v) The test will be conducted with reference to the Australian Standard AS 4391-1999 or other equivalent international standards.
b. Safety measures to be observed during the Hot Smoke Test:-
 (i) Adequate safety measures should be provided to prevent any possible spread of fire during the test;
 (ii) Adequate fire extinguishers should be provided at scene;
 (iii) The standing-by of a fire appliance may be required if considered necessary.

c. The smoke extraction system will be considered acceptable if the following points are complied with during the hot smoke test:-
 (i) The designed smoke clear height should be maintained;
 (ii) The low level fresh air make-up and the high level air extract should be formed in such a pattern that the smoke flow paths shall have a “scouring” effect in all areas within the smoke compartment. The make-up fresh air should not have any impact on the stability of the smoke layer;
 (iii) The smoke extraction system should actuate promptly in response to a fire alarm signal;
 (iv) No significant disperse of smoke should occur at adjoining smoke compartment(s);
 (v) No deflection exceeding the design limit should be observed at hanging smoke curtains;
 (vi) No significant smoke should be built up in ‘stagnant corners’ beneath the smoke layer;
 (vii) No smoke should re-enter into the building through building openings or fresh air intake louvers.

A. Dynamic smoke extraction system

(i) Acceptance Testing

1. Where interaction with other systems is part of the designed operational mode, all such systems shall be correctly functioning before a final fire services inspection takes place.
2. ‘Completion’ shall include all necessary permanent labels, instruction plaques, fully detailed operating and maintenance manuals and diagrams, record ‘as built’ drawings, etc.
3. Ensure tests required under para. B.17 of Section 5.23 of the Code of Practice for Minimum Fire Service Installations and Equipment are carried out, recorded and record certified.
4. All systems are to be completed and tested and the designer is to satisfy himself that they are functioning correctly before the final full test and demonstration takes place with the Fire Services Inspecting Officers in attendance. A full set of test and functional operation check records (see para. 7 hereof) shall be submitted with the request for the attendance of the Fire Services Inspecting Officers. Accompanying the records shall be a certificate signed by the designer on behalf of the design company or organization confirming or otherwise that he is satisfied that the installations are operating in accordance with his design and the requirements of the Fire Services Department.
5. The format/method/apparatus of the required operational and functional tests (including hot smoke test) shall be agreed with Fire Services Department before any such tests commence.
6. Except for simple devices such as pitot-static tubes, inclined manometers, U gauges and the like, all instruments, meters, etc. used for testing purposes shall:—
 a. be provided in duplicate;
 b. have a manufacturer’s claimed accuracy of not more than plus or minus two percent of range;
 c. be manufactured to an appropriate British Standard or recognized equal international or...
national standard where appropriate and available; and

d. have been calibrated by a recognized testing or calibration laboratory not more than 3 months prior to the date of test. The calibration certificate provided by the laboratory shall be available during the test.

7. Full and complete records are to be taken of all tests and the results thereof including not less than:

a. records of pressure testing during construction— see para. B.17 of Section 5.23 of the Code of Practice for Minimum Fire Service Installations and Equipment;

b. make, serial no., type and owner of all instruments used, with a copy of the calibration certificates;

c. actual measurements taken;

d. corrected measurement from (c) above;

e. resulting air flows;

f. make, serial no., type and use of every device checked;

g. date and time of test;

h. signature of operator/tester or supervisor and any witness for each test; and

i. signature of acceptance of and by designer.

(ii) Maintenance

1. Where dedicated systems are installed they should be actuated by the owner or his agent at intervals not exceeding three months and checked to ensure that all functions sequence and operate correctly.

2. Where dual purpose systems are provided they should be actuated into smoke extraction mode by the owner or his agent at intervals not exceeding six months and checked as in para. 1 above.

3. Where systems are mixed types the shorter intervals should apply.

4. In addition to the foregoing, at intervals not exceeding 12 months the systems shall be actuated and a full test shall be carried out as described in Section 2.23 (A) (i) hereof, by a registered fire service installation contractor and a maintenance certificate shall be sent to the Director of Fire Services.

5. The owner or his agent should ensure that all routine oiling, greasing, etc. is carried out from time to time to ensure reliable operation.

6. Any fire/smoke dampers installed should be maintained regularly by the owner or his agent.

7. A record log should be maintained by the owner or his agent for all systems, providing a complete record of the actions carried out under para. 1 to 6 hereof and the results thereof under signature of the supervisor and witness.

(B) Static smoke extraction system

(i) Acceptance Testing

1. On completion of the installation the whole shall be inspected by a registered fire service installation contractor. For installations with permanent barriers and/or exhaust openings, it shall be ensured that all barriers and openings are properly provided and all labels are supplied and fixed.

2. For systems without permanent fixed barriers and openings, all devices shall be checked in the non-operated positions; the actuation system shall then be operated and all devices checked to ensure they have operated correctly.
3. All components shall be reset to the non-operated position and then with the electrical power source removed. All devices shall again be checked to ensure that they have all correctly performed the ‘fail-safe’ function, i.e. all in their fire positions.

4. Ensure all labels and instructions are provided.

(ii) Maintenance

1. The system shall be inspected annually by a registered fire service installation contractor to ensure that they are in efficient working order.

2. The inspections shall include all actuation, checking of notices, etc. as described under Section 2.23 (B)(i) hereof.

2.24 Sprinkler system

(i) Acceptance Testing

The system should be tested in accordance with the Loss Prevention Council Rules on Automatic Sprinkler Installations (with suitable modifications pertinent to Hong Kong), or other standards and requirements as may be prescribed by the Director of Fire Services on account of the specific features of the system.

(ii) Maintenance

The installation shall be maintained in efficient working order at all times and shall be inspected by a registered fire service installation contractor at least once in every 12 months.

2.25 Street fire hydrant system

(i) Acceptance Testing

The hydrant shall be of an accepted standard pattern and, when tested in accordance with provision of BS 1042 with one 65 mm outlet working, shall be capable of delivering not less than 2,000 litres per minute (33.3 l/sec.) with a minimum running pressure of 170 kPa at the outlet.

The minimum output and pressure at above paragraph should be made available from two 65 mm outlets of a system delivering at the same time, i.e. a total output of not less than 4,000 litres per minute (66.7 l/sec.).

(ii) Maintenance

The installation shall be maintained in efficient working order at all times and shall be inspected by a registered fire service installation contractor at least once in every 12 months.

2.26 Supply tanks

(i) Acceptance Testing

No specific test is required other than visual inspection for the supply tank and measurement of its effective storage capacity for compliance with the requirements of the Director of Fire Services.

(ii) Maintenance

The supply tank should be maintained in full storage capacity by the owner or his agent at all times and be checked for leakage periodically.

2.27 Ventilation/air conditioning control system

(i) Acceptance Testing

The override control of the ventilation/air conditioning control system shall be tested to ensure satisfactory operation at alarm condition to the satisfaction of the Director of Fire Services.

(ii) Maintenance

The installation shall be maintained in efficient working order at all times and shall be inspected by a registered fire service installation contractor at least once in every 12 months.
The operation of this override control system should be tested at least once every six months, and the results entered in a log book by the owner or his agent. This log book should be kept in the premises and be available for inspection by the Director of Fire Services as and when required.

2.28 Water mist system

(i) Acceptance Testing
The system shall be tested in accordance with all the technical requirements as stipulated in NFPA 750/2000 Edition for Water Mist System, and other requirements as may be prescribed by the Director of Fire Services on account of the specific features of the system.

(ii) Maintenance
The installation shall be maintained in efficient working order at all times and shall be inspected by a registered fire service installation contractor at least once in every 12 months.

Any alteration to, repair or maintenance on the water mist system after initial installation shall also be endorsed by a qualified person, who should be a registered Professional Engineer under Cap. 409 in the discipline of building services or mechanical engineering, or one with qualifications acceptable to the Director of Fire Services, e.g. the system manufacturer.

All installation, repair and maintenance work shall be carried out and certified by a registered fire service installation contractor.

2.29 Water spray system

(i) Acceptance Testing
The system shall be tested in accordance with all the technical requirements as stipulated in NFPA Standard 15 for Water Spray Fixed System, and other requirements as may be prescribed by the Director of Fire Services on account of the specific features of the system.

(ii) Maintenance
The installation shall be maintained in efficient working order at all times and shall be inspected by a registered fire service installation contractor at least once in every 12 months.

2.30 Water supply

(i) Acceptance Testing
The water supply for fire service systems shall be checked for permanent connection at single or dual end feed. Transfer pump, if installed, shall be tested for efficient operation.

(ii) Maintenance
The water supply piping system should be checked for leakage by the owner or his agent periodically. The transfer pump shall be maintained in efficient working order at all times and be inspected by a registered fire service installation contractor at least once in every 12 months.

Part III MISCELLANEOUS

3.1 The Code deals only with the inspection, testing and maintenance of fire service installations and equipment after the same have been provided for a building. The general requirements as to what installations and equipment are to be provided in buildings are dealt with in another Code called the Code of Practice for Minimum Fire Service Installations and Equipment published by the Director of Fire Services.

3.2 For the avoidance of doubt it is hereby declared that the Director of Fire Services, in his absolute discretion, may, in any particular case, vary any of the requirements of this Code and in particular may require different inspections or tests in regard to any installation or equipment other than the inspections or tests indicated in this Code, either in addition to or in substitution of the inspections and tests so indicated.
List of Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDIX 1</td>
<td>Checklist for Actuating Devices and Operation of Fire Shutter</td>
<td>17–18</td>
</tr>
<tr>
<td>APPENDIX 2</td>
<td>Checklist for CO₂/Clean Agent Extinguishing System</td>
<td>19–23</td>
</tr>
<tr>
<td>APPENDIX 3</td>
<td>Checklist for Emergency Generator Installation</td>
<td>24–28</td>
</tr>
<tr>
<td>APPENDIX 4</td>
<td>Checklist for Inspection of Fire Detection and Alarm System</td>
<td>29–45</td>
</tr>
<tr>
<td>APPENDIX 5</td>
<td>Checklist for Fire Hydrant and Hose Reel Installations</td>
<td>46–56</td>
</tr>
<tr>
<td>APPENDIX 6</td>
<td>Minimum Fire Resisting Cable Requirements for Fire Service Installations</td>
<td>57–58</td>
</tr>
<tr>
<td>APPENDIX 7</td>
<td>Notification to FSD on the occasion building FSI is shut down for works</td>
<td>59</td>
</tr>
<tr>
<td>APPENDIX 8</td>
<td>Notes on Fire Extinguishers and Fire Blankets (Suitability and Maintenance)</td>
<td>60–71</td>
</tr>
</tbody>
</table>
Checklist for Actuating Devices and Operation of Fire Shutter

I. REFERENCE

<table>
<thead>
<tr>
<th>Project</th>
<th>F.S.D. Ref.</th>
<th>Address</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L.P.C. Ref.</th>
<th>Maker’s Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. TYPE

<table>
<thead>
<tr>
<th>Single Steel Rolling Shutter</th>
<th>[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Steel Rolling Shutter</td>
<td>[]</td>
</tr>
<tr>
<td>Push-up Type with Lifting Handle</td>
<td>[]</td>
</tr>
<tr>
<td>With Mechanical Gearing</td>
<td>[]</td>
</tr>
</tbody>
</table>

III. INSTALLATION

<table>
<thead>
<tr>
<th>No.</th>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Where automatic self-closing devices are fitted, do they cause no interference to the manual opening and closing of the shutter?</td>
<td>[]</td>
<td>[]</td>
<td>…………………</td>
</tr>
<tr>
<td>3.2</td>
<td>Where smoke detectors are provided for the actuation of the shutter, are they fitted to both sides of the wall opening?</td>
<td>[]</td>
<td>[]</td>
<td>…………………</td>
</tr>
<tr>
<td>3.3</td>
<td>Are smoke detectors installed as far as practicable to the provisions of the L.P.C. rules for A.F.A.?</td>
<td>[]</td>
<td>[]</td>
<td>…………………</td>
</tr>
<tr>
<td>3.4</td>
<td>Is permanent nameplate with adequate information provided?</td>
<td>[]</td>
<td>[]</td>
<td>…………………</td>
</tr>
<tr>
<td>3.5</td>
<td>Are manual controls provided to both sides of the wall opening?</td>
<td>[]</td>
<td>[]</td>
<td>…………………</td>
</tr>
</tbody>
</table>

IV. SHUTTER OPERATION

<table>
<thead>
<tr>
<th>No.</th>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Does the automatic actuation device function satisfactorily?</td>
<td>[]</td>
<td>[]</td>
<td>…………………</td>
</tr>
<tr>
<td>4.2</td>
<td>Is secondary source of electricity supply provided?</td>
<td>[]</td>
<td>[]</td>
<td>…………………</td>
</tr>
<tr>
<td>4.3</td>
<td>Is the descending speed* of the shutter acceptable?</td>
<td>[]</td>
<td>[]</td>
<td>…………………</td>
</tr>
</tbody>
</table>

* Descending time shall within 15-60 seconds for shutters in openings in excess of 2.5 m in height; not faster than 8 seconds for other shutters in openings of height within 2.5 m and that the bottom rail of the shutter shall reach the mid-height in not less than half the total descending time of the shutter.
GENERAL COMMENTS & REMARKS

__

__

__

Test witness by :-

…………………………………. (Signature) …………………………………. (Signature)

………………………… (Name in block letters) …………………….. (Name in block letters)
F.S.I. Contractor’s Representative F.S.D. Inspection Officer

Date ……………………………………………… Date ……………………………………..
APPENDIX 2

Checklist for CO₂/Clean Agent Extinguishing System

I. REFERENCE

<table>
<thead>
<tr>
<th>Project</th>
<th>F.S.D. Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Location/Room</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Working/Design Drawing Ref</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is drawing enclosed?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approved Computer Program Ref</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is program enclosed?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Is catalogue enclosed?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Is certification for pneumatic test to pipings enclosed?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

II. TYPE OF SYSTEM

<table>
<thead>
<tr>
<th>Type of System</th>
<th>CO₂</th>
<th>FM200</th>
<th>NAFSIII</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature</th>
<th>CO₂</th>
<th>FM200</th>
<th>NAFSIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Flooding</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Portable</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Modular</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Pre-engineered</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>High Pressure</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Single Hazard</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Primary Bank Only</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

III. PROTECTED AREA

<table>
<thead>
<tr>
<th>Feature</th>
<th>Yes</th>
<th>No</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Does occupancy tally with approved building plans?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>3.2 Does compartmentation of protected premises tally with approved building plans?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>3.3 Does general layout tally with F.S.I. drawings?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>3.4 Are openings properly sealed or closable automatically during/after agent discharge?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>3.5 Are warning/instruction signs provided at entrance to; and in the case of normally occupied premises, inside the protected area?</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>3.6 Does the following components:—</td>
<td>Tally with drawings?</td>
<td>If not, whether the as-fitted location/position acceptable?</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>3.6.1 Audio Alarm—Bell/Buzzer etc.</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>3.6.2 Visual Alarm—Light/Strobe etc.</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>3.6.3 Detector</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>3.6.4 Manual Release</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Tally with drawings?

<table>
<thead>
<tr>
<th>Section</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tally with drawings?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If not, whether the as-fitted location/position acceptable?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.6.5 Piping

- Yes
- No

3.6.6 Nozzles

- Yes
- No

3.6.7 Agent Container

- Yes
- No

3.6.8 Control/Indication Panel

- Yes
- No

3.6.9 Ignition/Fuel Source shut down Device

- Yes
- No

3.6.10 Other Mechanical/Electrical/Pneumatic Operating Device

- Yes
- No

IV. THE SYSTEM (STATIC CHECK)

<table>
<thead>
<tr>
<th>Check Item</th>
<th>Yes</th>
<th>No</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Are system components approved/listed?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.1 Actuating Solenoid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.2 Cylinder Valve Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.3 Cylinder/Agent Container</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.4 Flexible Hose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.5 Distributor/Selector Valve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.6 Pilot Cylinder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.7 Alarm Bell (For Normal Application)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.8 Siren/Yodalarm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.9 Control/Indication Panel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.10 Remote Manual Release Unit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.11 Detector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.12 Discharge Nozzle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2 Is permanent nameplate with adequate information provided to:—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.1 CO₂ Container?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.2 FM200 Container?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.3 NAFSIII Container?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3 Is reliable means of indication provided for the determination of pressure in FM200/NAFSIII container?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4 Does the means of indication account for variation of container pressure with temperature?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5 Is agent of sufficient quantity provided?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6 Is cylinder/container properly mounted/secured?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7 Are markings on nozzles showing make; type and orifice size readily discernible?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8 Are pipings properly installed and secured in accordance with approved guide?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.9 Are pipings properly earthed?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.10 Are pipings suitably protected against mechanical, chemical, vibration or other damage?
[] [] ...

4.11 Are pipings of the approved type provided? (Please indicate the type used):—
[] [] ...

4.11.1 For 25-bar or 42-bar system:—
4.11.1.1 BS 3601 Seamless Schedule 80 []
4.11.1.2 ASTM A53 []
4.11.1.3 ASTM A106 []
4.11.1.4 JIS 3454 []

4.11.2 For 25-bar system only:—
4.11.2.1 BS 1387 Heavy Grade Butt Welded (Up to and including 50 mm nominal pipe size) []
4.11.2.2 BS 3601 Seamless Schedule 40 (Up to and including 100 mm nominal pipe size) []

4.12 Are jointings of approved type provided? (Please indicate the type employed):—
Screwed Joints []
Welded Joints []
Others (Please state) []
...
...

4.13 Is electrical apparatus intrinsically safe or of flame-proof type? (For application in explosive atmosphere only)

4.13.1 Detector [] [] ...
4.13.2 Fire Alarm Bell/Sounder [] [] ...
4.13.3 Opening/Closing device will not generate sparks [] [] ...
4.13.4 Ventilation shut down device will not generate sparks [] [] ...

V. DETECTION, ACTUATION & CONTROL SYSTEM (STATIC CHECK)

5.1 Is the correct type of detector provided? (Please indicate the type employed):—
Heat [] Smoke [] ...

5.2 Is operating alarm/indicator provided? (Please indicate the type provided):—
Alarm [] Indication [] ...
Both [] Audio []
Visual [] Olfactory []

5.3 Do electrical sources i.e. AC & DC provide adequate source of energy for:—
5.3.1 Detection? [] [] ...
5.3.2 Operating device? [] [] ...
5.4 Is manual control suitably protected against mechanical, weather or environmental damage? [] [] ...
5.5 Is manual control for actuation easily accessible at all times? [] [] ...

VI. FUNCTIONAL TEST (DYNAMIC TEST)

6.1 Does detector operate satisfactorily? [] [] ...
6.2 If cross-zoning employed, is the zoning of detectors satisfactorily arranged? [] [] ...
6.3 Does operating alarm/indication function properly? [] [] ...
6.4 Does actuating solenoid operate satisfactorily? [] [] ...
6.5 Does selector/distributor valve operate properly? [] [] ...
6.6 Does the manual control require a force of not more than 178 newtons to secure operation? [] [] ...
6.7 Does the manual control require a movement of not more than 356 mm to secure operation? [] [] ...
6.8 Is the shut-down of ventilation system satisfactorily accomplished? [] [] ...
6.9 If time delay of not more than 30 seconds is incorporated, does it function properly? [] [] ...

VII. PRACTICAL DISCHARGE TEST (DYNAMIC TEST) (IF REQUIRED)

7.1 Does agent discharge time within the limit specified by F.S.D.? [] [] ...
7.2 Are pipings securely installed to prevent pipe displacement or hazardous movement during discharge? [] [] ...
7.3 Is mechanical tightness of pipings and associated equipment in order? [] [] ...

VIII. REINSTATEMENT OF SYSTEM AFTER DISCHARGE (STATIC CHECK)

8.1 Is replacement cylinder/container of the correct type with sufficient pressure and content provided? [] [] ...
8.2 Is cylinder/container properly mounted? [] [] ...
8.3 Is cylinder/container properly connected? [] [] ...
8.4 Is control/indication panel properly reset? [] [] ...
8.5 Is ETL properly replaced/reinstated? [] [] ...
8.6 Is actuating solenoid properly linked/connected? [] [] ...
IX. GENERAL COMMENTS & REMARKS

Test witnessed by:—

... (Signature) .. (Signature)

.................................. (Name in block letters) (Name in block letters)
F.S.I. Contractor’s Representative F.S.D. Inspecting Officer

Date ... Date ...
Checklist for Emergency Generator Installation

I. Reference
Project: ... F.S.D. Ref.:
Address: ..

II. Installations and Equipment Connected (for record purpose)
Name of buildings being protected: ...

<table>
<thead>
<tr>
<th>(A) Fire service installation</th>
<th>Peak Starting Current (Iₜ)</th>
<th>Rated Input Power</th>
<th>Starting Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Fixed fire pump</td>
<td>No. × A</td>
<td>No. × kW</td>
<td></td>
</tr>
<tr>
<td>ii. Intermediate booster pump</td>
<td>No. × A</td>
<td>No. × kW</td>
<td></td>
</tr>
<tr>
<td>iii. Transfer pump</td>
<td>No. × A</td>
<td>No. × kW</td>
<td></td>
</tr>
<tr>
<td>iv. Sprinkler pump</td>
<td>No. × A</td>
<td>No. × kW</td>
<td></td>
</tr>
<tr>
<td>v. Fireman’s lift</td>
<td>No. × A</td>
<td>No. × kW</td>
<td></td>
</tr>
<tr>
<td>vi. Fire detection system</td>
<td>No. × A</td>
<td>No. × kW</td>
<td></td>
</tr>
<tr>
<td>vii. Smoke extraction system</td>
<td>No. × A</td>
<td>No. × kW</td>
<td></td>
</tr>
<tr>
<td>viii. Staircase pressurization</td>
<td>No. × A</td>
<td>No. × kW</td>
<td></td>
</tr>
<tr>
<td>ix. Exit sign/emergency lighting</td>
<td>No. × A</td>
<td>No. × kW</td>
<td></td>
</tr>
<tr>
<td>x. Others:</td>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(B) Other equipment (please specify)</th>
<th>A</th>
<th>kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>..</td>
<td>A</td>
<td>kW</td>
</tr>
</tbody>
</table>

Estimated maximum simultaneous starting and running load kW/ kVA

III. Emergency Generator Set Details

<table>
<thead>
<tr>
<th>Alternator</th>
<th>Prime Mover</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Make</td>
<td>..........................</td>
</tr>
<tr>
<td>3.2 Model</td>
<td>..........................</td>
</tr>
<tr>
<td>3.3 Serial No.</td>
<td>..........................</td>
</tr>
<tr>
<td>3.4 Rated Capacity</td>
<td>Power kVA</td>
</tr>
<tr>
<td>Voltage: 380/220</td>
<td>Power kW</td>
</tr>
<tr>
<td>Speed: rpm</td>
<td></td>
</tr>
<tr>
<td>Current A</td>
<td>Power factor</td>
</tr>
<tr>
<td>Frequency Hz</td>
<td></td>
</tr>
</tbody>
</table>
IV. Fuel

4.1 Type: [] Diesel [] other (please specify)

4.2 Type of tank: [] Built-in [] Separate

4.3 Separate fuel tank room is provided [] Yes [] No

4.4 Capacity of service tank: litres Capacity of main fuel tank:.................. litres

4.5 a. Fuel consumption litres/hour rate at full load:

b. Fuel consumption curve of generator is attached [] Yes [] No

c. Time allowed for max. fuel consumption at full load hours

d. Fuel storage is sufficient for 6 hrs. generator running to support fire service installations [] Yes [] No

4.6 Fuel tank room has been inspected and approved by Regional Office. (N.B.: Supporting document is attached) [] [] [] []

4.7 Surveyor report for fuel tank has been obtained as required by Dangerous Goods Division. [] [] [] []

4.8 DG license for fuel tank room holding more than 2,500 litres diesel has been obtained. (N.B.: Supporting document is attached) [] [] [] []

V. Visual Inspection

5.1 Adequate space (not less than 600 mm) is provided all round emergency generator for maintenance/cleaning. [] [] [] []

5.2 Air supply and discharge ductworks (if any) are provided free from obstruction. [] [] [] []

5.3 Air supply and discharge ductworks running in compartment other than emergency generator room are enclosed with proper fire resisting material. [] [] [] []

5.4 Service fuel tank in generator room is made of 3 mm steel construction and of capacity less than 500 litres. [] [] [] []

5.5 Generator built-in fuel tank is not greater than 500 litres. [] [] [] []

5.6 Fuel tank is electrically earthed. [] [] [] []
5.7 A baffle wall of brick-work construction or of 9 mm metal sheet is provided between the side of service tank (if installed) and generator, serving as a screen wall between the two.

5.8 Fuel refilling pump is connected to essential power supply.

5.9 A shut off valve is provided on the supply pipe from fuel tank to the service tank of generator.

5.10 Capacity of battery is capable of starting the generator 4 times consecutively and calculation sheet is enclosed (capacity: Ah)

5.11 The batteries are kept in fully charged condition and the trickle charge is operating.

5.12 Inside emergency generator room,

5.12.1 door sill of sufficient height is provided to contain the total fuel contents of the service tank (if installed), fuel tank and sump of the generator;

5.12.2 detailed operation instructions are displayed; and

5.12.3 a log book is provided.

5.13 Integrity of the FRP construction of generator room and the door is intact.

5.14 The notices “Emergency Generator” and “No Smoking” in 120 mm English and Chinese characters are provided at the entrance to the emergency generator room.

VI. Functional Testing

6.1 The manual starting facilities of the emergency generator can operate satisfactorily.

6.2 Upon failure of normal electricity supply, emergency generator:—

6.2.1 automatically starts when the duration of power failure exceeds 1 second; and

6.2.2 transfers to FS loads within 15 seconds.

6.3 Emergency generator is capable of restarting upon failure of first attempt in starting.

6.4 Audible and visual alarms are given locally, and at fire control main panel when the generator starting sequence is locked out due to starting failure.
6.5 After one hour of running test, all instruments, safety devices, etc. indicate “normal” condition.

6.6 The generator set will continue to run after a pre-determined time recommended by manufacturer unless it is stopped manually if the normal power supply has resumed.

6.7 All testing are carried out with the generator room doors kept closed.

6.8 Warning signal is given locally and at fire control main panel when manual/auto selector switch turn to manual position.
(N.B. such provision is strongly recommended)

6.9 Remote control valve on supply pipe to the service tank is in good working order.

6.10 All moving parts are effectively and rigidly guarded for safety.

6.11 All hot parts are properly insulated.

6.12 No exhaust leak is detected inside generator room while the generator is running.

VII. On Load Test

7.1 All loadings as listed in item 2 were connected
[] Yes [] No

7.2 Frequency (Hz) ...

7.3 Maximum starting current (I_{LMAX})
R: A Y: A B: A

7.4 Voltage dip: % Voltage recovery time: seconds

7.5 Running Current (I_r)
R: A Y: A B: A

7.6 Voltage (Volts)
R-Y: Y-B: B-R:.......................

7.7 Engine speed (RPM)

7.8 Duration of on-load test (Hr.)

VIII. General Comments & Remarks

Tested by:
Signature: …………………………………
Full name of installation engineer: …………………
Name of FSI contractor: ………………….
Company Chop: ……………………………
Date: ………………………………………

Witnessed by:
Signature: …………………………………
Full name of design engineer: ……………………………
Name of Design consultant: ……………………………
Company Chop: ……………………………
Date: ………………………………………
Checklist for Inspection of Fire Detection and Alarm System

I. Reference

Project: ... F.S.D. Ref: ...
Address: ..
Type of building: Domestic/Industrial/Godown/Commercial/Office/Composite/Hotel/Hospital/
Others with/without basement ...

II. Type of Equipment

2.1 Alarm Annunciation Panel

Manufacturer/model no. of alarm annunciation panel:
(Main panel) ..
(Sub-panel/repeater panel, if any) ...
F.S.D. approved type : Yes/No
Type : Conventional type []
Addressable type []

2.2 Power Supplies

2.2.1 Mains supply : Supply Voltage/Phase/Hz ...
2.2.2 Emergency generator : Rating of generator (kVA) ..
: Fuel oil supply capacity (Litres of oil) ..
2.2.3 Standby battery : Type of batteries ..
: Capacity of batteries (Ahr) ...
: Backup period for fire services (hr) ...

2.3 Detectors

2.3.1 Heat detector : Manufacturer/model no. : ...
: F.S.D. approved type : Yes/No
: Type : Fixed temperature []
Rate-of-rise temperature []
Combination []
Linear cable []
Others []
(please specify ...)
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Manufacturer/model no.</th>
<th>F.S.D. approved type</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.2</td>
<td>Smoke detector</td>
<td></td>
<td>Yes/No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ionization []</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Optical []</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Point []</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aspirating []</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Others []</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(please specify)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.3</td>
<td>Flame detector</td>
<td></td>
<td>Yes/No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Infra-red []</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ultra-violet []</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Others []</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(please specify)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.4</td>
<td>Others</td>
<td></td>
<td>Yes/No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Manual Call Points</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Breakglass type []</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Others []</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(please specify)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Alarm Sounders</td>
<td></td>
<td>Yes/No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Visual Fire Alarm Lamps</td>
<td></td>
<td>Yes/No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Fire Resistant Cables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BS 6387 Cat. AWX, AWY or AWZ []</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BS 6387 Cat. BWX, BWY or BWZ []</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BS 6387 Cat. CWX, CWY or CWZ []</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BS 6387 Cat. SWX, SWY or SWZ []</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MICS cable to BS 6207 []</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Others with F.S.D.’s acceptance letter []</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(please specify)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
III. Zoning

3.1 Detectors

<table>
<thead>
<tr>
<th>Zone No.</th>
<th>Location</th>
<th>Total no. of detectors</th>
<th>Detector type *</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Total no. of detectors: ……………………

* S-smoke, H-heat, F-flame, O-others (please specify)

3.2 Alarm Sounders

<table>
<thead>
<tr>
<th>Zone No.</th>
<th>Location</th>
<th>Total no. of sounders</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Total no. of sounders: ……………………

3.3 Manual Call Points

<table>
<thead>
<tr>
<th>Zone No.</th>
<th>Location</th>
<th>Total no. of call points</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Total no. of manual call points: ……………………

3.4 Visual Fire Alarm Signal Lamps

<table>
<thead>
<tr>
<th>Zone No.</th>
<th>Location</th>
<th>Total no. of VFA signal lamps</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Total no. of VFA signal lamps: ……………………

(Use separate sheets or computer printouts in full accordance with the above format if the space is not sufficient for inserting all the zones)
IV. Visual Inspection

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>General</td>
<td>All fire detection and equipment are conformed to F.S.D.’s requirements.</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>2/002, 2.2</td>
</tr>
<tr>
<td>4.1.2</td>
<td>All individual components of a fire alarm system are mutually compatible.</td>
<td>[]</td>
<td>6.7/002, 2.5</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Operating instructions showing the fault indication or correct action that should be taken in the event of a fire are provided adjacent to the alarm annunciation panel.</td>
<td>[]</td>
<td>23.1</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Diagrammatic representation of the building, showing at least the building entrances, the circulation areas, the escape routes and the division of zones is provided on or adjacent to the alarm annunciation panel.</td>
<td>[]</td>
<td>15.4.3</td>
</tr>
<tr>
<td>4.1.5</td>
<td>As-fitted zoning schedule is provided adjacent to the alarm annunciation panel.</td>
<td>[]</td>
<td>23.1</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Log book is provided adjacent to the alarm annunciation panel.</td>
<td>[]</td>
<td>23.1</td>
</tr>
<tr>
<td>4.2</td>
<td>Detectors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.1</td>
<td>Appropriate types of detectors are provided in areas as indicated on the approved building plans.</td>
<td>[]</td>
<td>Code</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Locations of detectors tally with stamped FSI plans.</td>
<td>[]</td>
<td>Code</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Detection zonings are properly labelled at the alarm annunciation panel.</td>
<td>[]</td>
<td>Code</td>
</tr>
<tr>
<td>4.2.4</td>
<td>In the floor where sleeping risk exists (e.g. hotel, hospital, etc.):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) heat detector should be used in kitchen.</td>
<td>[]</td>
<td>Code</td>
</tr>
<tr>
<td></td>
<td>(b) smoke detector should be used in other areas except sprinkler protected toilets, bathrooms and staircases.</td>
<td>[]</td>
<td>Code</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Detectors are provided to entire basement (except car parking area, strong room & safe deposit vault).</td>
<td>[]</td>
<td>Code</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Intrinsically safe detector is used in the environment which may have the presence of explosive or flammable gas.</td>
<td>[]</td>
<td>Code</td>
</tr>
<tr>
<td>4.2.7</td>
<td>The aggregate floor area covered by any single detection loop circuit is $\leq 10,000$ m² calculated on those portions of the premises installed with fire detectors.</td>
<td>[]</td>
<td>6(d)/002, 2.4</td>
</tr>
<tr>
<td>4.2.8</td>
<td>The aggregate floor area covered by a single detection zone is $\leq 2,000$ m² calculated on those portions of the premises installed with fire detectors.</td>
<td>[]</td>
<td>7.2(a)</td>
</tr>
</tbody>
</table>
4.2.9 Remote indicator lamps are provided to show visually the position of the fire detection signal for search distance > 30 m.

4.2.10 Remote indicator lamps outside doors (near door exit) are provided for detectors installed inside rooms if doors are likely to be locked.

4.2.11 If the building consists of more than one storey, a single zone design is adopted for the total floor area is ≤ 300 m2.

4.2.12 As the total floor area of the building is > 300 m2, all zones are restricted to a single storey, except that:

(a) if the total floor area of a fire compartment is ≤ 300 m2, and any communication with other fire compartments is only at the lowest level of the building, then that fire compartment is considered as a single zone even though there may be more than one storey within it; and

(b) if detectors or call points are fitted in stairwells, lightwells, liftwells and other flue-like structures extending beyond one floor but within one fire compartment, then the volume of the well or shaft should be considered as one or more separate zones.

4.3 Alarm Sounders

4.3.1 An alarm sounder (weatherproof type) is installed at the external/outside of the building (near the main entrance).

4.3.2 An alarm sounder is provided near the control and indicating equipment.

4.3.3 One alarm sounder is provided at each hose reel point.

4.3.4 All alarm sounder cases are painted in red colour and clearly marked ‘FIRE ALARM’ ‘火警’ in white color. The height of all the English and Chinese wordings shall not be less than 10 mm and 15 mm respectively.

4.3.5 A clearly labelled facility is available at or near the alarm annunciation panel for starting or restarting the fire alarm sounders. Operation of this facility is not dependent on the state of any silencing device.

4.3.6 For sounders used for simple ring circuits, the distribution wiring to each sounder circuit should be protected against overload due to short circuit by a fuse or similar device.

4.4 Manual Call Points

4.4.1 Zoning of manual call points is at least one zone per floor or storey.
4.4.2 One manual call point is located at each of the following equipment/location.

(a) hose reel point;
(b) adjacent to all storey exits;
(c) adjacent to all exits to open air.

4.4.3 The travel distance for finding a manual call point is \(\leq 30 \text{ m} \).

4.4.4 Manual call points are fixed at a height of about 1.2m above the finished floor level.

4.5 Visual Fire Alarm Signals

4.5.1 VFA signal lamps are labelled ‘FIRE ALARM’ ‘火警’. The height of English and Chinese characters is not less than 10 mm and 15 mm, respectively.

4.5.2 Visual alarm signal is in the form of red flashing light.

4.5.3 Each compartment is provided with at least one VFA signal lamp.

4.5.4 Areas to be covered by VFA are in full compliance with the approved building plans.

4.5.5 The design of the VFA system conforms to:

(a) Section 4 – 4, NFPA 72 : 1999, or

4.6 Time Related Systems and Transmission Delay Units

4.6.1 Time related system and/or transmission delay unit are/is provided.

4.6.2 Time related system and/or transmission delay unit are/is approved by F.S.D..

4.6.3 An indicator light is provided on or adjacent to the control and indicating equipment showing the working or silent hours state of the system.

4.6.4 A manual override switch is provided on or adjacent to the control equipment for de-activating the time related system when the building is unoccupied.

4.7 Control and Indicating Equipment

4.7.1 The alarm annunciation panel is located in an area on the ground floor and in the immediate vicinity of the building entrance easily to be accessed by the F.S.D. or in the building’s Fire Control Centre/Room.

4.7.2 Repeater panels are provided at different entrances or other points of entry to be used by the F.S.D. in accordance with the approved building plans.
4.7.3 Where the control and indicating equipment is installed in a severe weather environment, a weatherproof protective enclosure with adequate ventilation is provided to protect it from being damaged by high humidity and water.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.3.7</td>
</tr>
</tbody>
</table>

4.7.4 All the alarm indications are displayed in both Chinese and English so that the origin of the alarm position in relation to this building can be easily, quickly and unambiguously identified.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.4.1</td>
</tr>
</tbody>
</table>

4.7.5 The method of indication of the origin of alarms is by means of:

(a) a display of letters and/or numbers.
(b) a permanent mimic diagram.
(c) a display of a mimic diagram on a visual display unit (VDU) and (a) or (b) above or a second VDU or a printer.
(d) by other suitable means.
 (please specify ………………………………)

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.4.3</td>
</tr>
</tbody>
</table>

4.7.6 The operation of all manual controls and isolating devices should be limited to authorized personnel. It may be provided by restricting access to the equipment by means of the following:

(a) the use of a lock.
(b) a key-operated switch.
(c) in a disciplined environment, by the use of a list of authorized personnel.
(d) other acceptable means.
 (please specify ………………………………)

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.5</td>
</tr>
</tbody>
</table>

4.7.7 No silencing switch device is installed as a single component. This device is incorporated in either the main fire services control panel or a repeater panel.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.11</td>
</tr>
</tbody>
</table>

4.8 Power Supplies

4.8.1 Permanent electricity supply is connected.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Code</td>
</tr>
</tbody>
</table>

4.8.2 Battery powered standby supply is connected.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Code</td>
</tr>
</tbody>
</table>

4.8.3 Battery power supply is provided.
(Voltage:……….. DC volts:…… Ahr:……….)

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Code</td>
</tr>
</tbody>
</table>

4.8.4 The battery charger is capable of recharging the batteries from fully discharged to fully charged within 24 hours.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.3.2.1</td>
</tr>
</tbody>
</table>

4.8.5 Connections to the mains supply is via an isolating protective device (e.g. an isolating switch-fuse) reserved solely for all the fire service installations.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.2</td>
</tr>
</tbody>
</table>
4.8.6 Every isolator, switch and protective device that can supply for the fire alarm system is properly labelled as appropriate:

- **(a)** ‘FIRE ALARM’ ‘火警警報’;
- **(b)** ‘FIRE ALARM DO NOT SWITCH OFF’ ‘火警警報切勿切斷電源’; or
- **(c)** ‘WARNING: THIS SWITCH ALSO CONTROLS THE SUPPLY TO THE FIRE ALARM SYSTEM’ ‘警告: 此掣掣供應火警警報系統電源’.

All warning labels are engraved in white letter/character with red colour background. The height of all the English and Chinese wordings is not less than 10 mm and 15 mm respectively.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.8.7 Normal and standby battery supplies can each be capable of supplying the maximum alarm load irrespective of the condition of the other supply.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.4.1</td>
</tr>
</tbody>
</table>

4.8.8 Power supply equipment for multiple occupancy buildings is sited in an area of common access.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.7.3</td>
</tr>
</tbody>
</table>

4.9 Cables, Wiring and Other Interconnections

4.9.1 Cables used for the interconnections between VFA signaling devices, sounders, control and indicating equipment and power supplies are suitable for prolonged operation during a fire or can resist fire for at least 30 minutes.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.7 & 17.2</td>
</tr>
</tbody>
</table>

4.9.2 Cables requiring prolonged operation during a fire should be:

- **(a)** MICS cable complying with BS6207; or
- **(b)** complying with BS6387, meeting with the requirements for Cat. AWX or SWX; or
- **(c)** embedded in the structure of the building and protected by the equivalent of at least 12 mm of plaster; or
- **(d)** separated from any significant fire risk by a wall, partition or floor having at least 30 minutes fire resistance; or
- **(e)** by other acceptable means as stipulated in relevant F.S.D. Circular Letters.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.4.2 3/2002</td>
</tr>
</tbody>
</table>

4.9.3 Cables other than MICS cable complying with BS 6207 or sheathed steel-wire-armoured cable complying with BS 6346 or BS 5467 should be mechanically protected if:

- **(a)** they are not monitored;
- **(b)** they are less than 2.25 m above the floor; or
- **(c)** physical damage or rodent attack is likely.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.5.2</td>
</tr>
</tbody>
</table>
4.9.4 Mechanical protection is provided to the cables by one of the following methods:

- (a) installation in conduit, ducting or trunking;
- (b) by laying the cable in a channel;
- (c) using MICS cable complying with BS 6207 or sheathed steel-wire-armoured cable complying with BS 6346 or BS 5467.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.5.2</td>
</tr>
</tbody>
</table>

4.9.5 Conductors carrying fire alarm power or signals are separated from conductors used for other systems by one or more of the followings:

- (a) installation in conduit, ducting, trunking or a channel reserved for fire alarm conductors;
- (b) a mechanically strong, rigid and continuous partition of non-combustible material;
- (c) mounting at a distance of at least 300 mm from conductors of other systems;
- (d) wiring in cables complying with BS 7629;
- (e) wiring in MICS cable with an insulating sheath or barrier. The exposed-to-touch rating of the TEE Wiring Regulations should not be exceeded.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.10</td>
</tr>
</tbody>
</table>

4.9.6 For cable which should be segregated from cables of other services but is not enclosed in ducting, trunking or a channel reserved for fire alarm circuits, it is suitably marked or labelled at intervals not exceeding 2 m to indicate its function and the need for segregation.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.10</td>
</tr>
</tbody>
</table>

4.9.7 DTL is mechanically protected in accordance with the methods mentioned in item 4.9.4 above.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.11</td>
</tr>
</tbody>
</table>

4.9.8 Cabling and wiring installation is in accordance with the latest edition of the EE Code.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.4.1</td>
</tr>
</tbody>
</table>

4.9.9 Any joint in a cable is enclosed in a suitable and accessible junction box labelled ‘FIRE ALARM’ ‘火警警報’ engraved in white letter/character with red colour background. The height of all the English and Chinese wordings is not less than 10 mm and 15 mm respectively to avoid confusion with other services.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.9 & 24.4.3</td>
</tr>
</tbody>
</table>

V Testing

5.1 Detectors

5.1.1 Upon actuation of any detector in the building, the correct audio/visual warning device for the fire alarm and detection system is initiated.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26.5</td>
</tr>
</tbody>
</table>

5.1.2 The sensitivity of all heat/smoke/flame detectors is correctly adjusted/ set and checked in full accordance with the manufacturer’s recommendations.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Code</td>
</tr>
</tbody>
</table>

5.1.3 The zoning of detectors is correct.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Code</td>
</tr>
</tbody>
</table>
5.2 **Alarm Sounders**

5.2.1 Upon the actuation of the detector, alarm should be given by alarm sounder installed at the building external near the entrance.

5.2.2 Background noise (N) likely to persist for a period longer than 30 seconds.

5.2.3 For domestic building, the minimum sound level of alarm sounders is measured at 3 m from the inside of the main entrance door with all doors shut off at all flats and the result is,

\[\text{Sound Level (dB(A))} \]

\(\text{(a)} \geq 60 \text{ dB(A)} \); and
\(\text{(b)} \geq [5 \text{ dB(A)} + \text{background noise, N at item 5.2.2}] \)

\[= \text{Sound Level (dB(A))} \]

5.2.4 For building other than domestic building, the minimum sound level of alarm sounders is measured at 3 m from the inside of the main entrance door with all doors shut off at all rooms/premises and the result is,

\[\text{Sound Level (dB(A))} \]

\(\text{(a)} \geq 65 \text{ dB(A)} \); and
\(\text{(b)} \geq [5 \text{ dB(A)} + \text{background noise, N at item 5.2.2}] \)

\[= \text{Sound Level (dB(A))} \]

5.2.5 The primary sounders should meet the required sound level when the machine noise ceases and the secondary sounders are out of service.

5.2.6 Where secondary sounders are installed, the primary sounders in those parts of the premises without noisy machines are distinctly audible at all times when operated.

5.2.7 Failure of the power supply to the secondary sounders is either:

\(\text{(a)} \) resulted in silencing of the noisy machines; or
\(\text{(b)} \) in the giving of an audible and visible fault warning at the control and indicating equipment.

5.2.8 Sounding sequence of alarm sounder operation complies with requirements stipulated in F.S.D. Circular Letter No. 4/96, Part VIII. Item 4.

5.3 **Manual Call Points**

5.3.1 The zoning of manual call points is correct.

5.3.2 Upon actuation of any manual call point in the building, the fixed fire pump comes into operation regardless of the zoning of the manual call point.
Upon actuation of any manual call point in the building, the correct audio/visual warning device for the fire alarm and detection system is initiated.

- **5.3.3**

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The delay between operation of a call point and the giving of the general alarm is \(\leq \) 3 seconds.

- **5.3.4**

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.1</td>
</tr>
</tbody>
</table>

Visual Fire Alarm Signals

The power supply of the VFA system is from:

(a) DC supply source with back-up supply by battery; or

(b) AC supply source with secondary supply from emergency generator; or

(c) AC supply source with secondary AC supply from the main electricity supply obtained from before the consumer side main power supply switch.

- **5.4.1**

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4/2001, Para. 4(ii)</td>
</tr>
</tbody>
</table>

All VFA flashing light is visible to normal eyesight in the required protected areas when the fire alarm system is actuated.

- **5.4.2**

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4/2001, Para. 4(iv)(b)</td>
</tr>
</tbody>
</table>

VFA signal is clearly distinguishable from any other non-fire services visual signals used in the premises.

- **5.4.3**

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.7</td>
</tr>
</tbody>
</table>

Time Related Systems and Transmission Delay Units

Repeated switch operations to delay the automatic changeover to more sensitive state should not extend \(\geq \) 6 minutes after the last operation of the switch.

- **5.5.1**

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.6 1/2002, 2.34</td>
</tr>
</tbody>
</table>

The alarm is automatically transmitted to FSCC after a fixed delay period \(\leq \) 1 minute, unless a manual override operation has been carried out.

- **5.5.2**

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.7 1/2002, 2.38</td>
</tr>
</tbody>
</table>

Automatic transmission of alarm to FSCC/Chubb Centre or remote manned center is delayed for an initial period \(\leq \) 1 minute.

- **5.5.3**

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4/2001, Pt. II</td>
</tr>
</tbody>
</table>

Transmission of alarm is further delayed for a period \(\leq \) 5 minutes after the manual operation is performed at the control equipment.

- **5.5.4**

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4/2001, Pt. II</td>
</tr>
</tbody>
</table>

During any delay period, a manual operation at the control panel or the operation of a manual call point causes the immediate sounding of the fire alarm and transmission of the alarm.

- **5.5.5**

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4/2001, Pt. II</td>
</tr>
</tbody>
</table>

The sounding of the fire alarm and transmission of the alarm is not delayed or prevented by the operation of a manual call point or the actuation of a sprinkler flow switch at any time.

- **5.5.6**

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4/2001, Pt. II</td>
</tr>
</tbody>
</table>

The manual override switch is only capable of de-activating the system from the time related system but cannot re-activate the system again.

- **5.5.7**

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.6</td>
</tr>
<tr>
<td>Code</td>
<td>Yes</td>
<td>No</td>
<td>N/A</td>
<td>Remark</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>--------</td>
</tr>
<tr>
<td>5.5.8</td>
<td></td>
<td></td>
<td></td>
<td>The system is not capable of permitting the action of the manual override switch to be temporarily or permanently cancelled by any automatic function.</td>
</tr>
<tr>
<td>5.6</td>
<td>Control and Indicating Equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6.1</td>
<td>Audio, visual alarms for the fire detection and alarm system, signals for system/ detector/ manual call point/ sounder fault and signals to all the ancillary equipment are given correctly at the control and indicating equipment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6.2</td>
<td>DTL to the FSCC/Chubb Centre is functioning properly. (please state DTL no.: ……………………..)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6.3</td>
<td>The following panel functions and switches are working properly:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) alarm silence and reset switches.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) normal supply and standby battery supply.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) Power on/failure indicator.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(d) DTL failure indicator.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(e) zone alarm/fault indicator.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two simultaneous faults should not remove fire alarm protection from an aggregate area greater than 10,000 m² calculated on those portions of the premises installed with fire detectors.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6.5</td>
<td>Removal of a detector is causing a ‘fault’ signal to be generated at the control equipment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6.6</td>
<td>A facility/provision is provided so that individual detector can be tested without either sounding an alarm or requiring the complete system to be disabled to prevent such an alarm.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6.7</td>
<td>The operation of a silencing device:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) requires a manual operation;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) causes an audible signal to be given in the control and indicating equipment with a distinctive sound different from any alarm and control sounder;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) should not cancel any visual signal of the alarm at the control equipment;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(d) should not prevent the proper receipts of alarm from any zones(s) not already providing an alarm;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(e) should not prevent the correct operation of any control for starting or restarting the alarm sounders;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(f) should not prevent the transmission of an alarm to a remote manned centre.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6.8</td>
<td>A fault warning signal is generated at the control and indicating equipment when any sounder is disconnected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6.9</td>
<td>A fault warning is given in the event of failure on microprocessors for program controlled system.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.6.10 The operation of microprocessors for program controlled system is automatically reset after the system has been restarted.

5.6.11 Following reinitialization, repair of any fault, or restoration of any power supply failure, all program controlled systems should be capable of:

(a) sounding a general alarm within 30 seconds; and
(b) within a further period of 10 minutes of attaining normal operating conditions without further manual intervention.

(Remark: The silencing of any fault warning is not regarded as manual intervention)

5.6.12 The audible indications of the control and indicating equipment are easily heard in its vicinity.

5.7 Power Supplies

5.7.1 Both the normal supply and the standby supply is capable of continually supplying the largest load under normal, fire and fault conditions.

5.7.2 A green lamp when lit indicates normal condition of power supply.

5.7.3 For systems supervised at intervals of ≤ 12 hours, or that having a link over which a warning of failure of the normal supply can be given to a remote manned centre, the battery supply is capable of maintaining the system in operation for at least 24 hours, after which sufficient capacity should remain to provide an evacuation alarm in all zones for at least 30 minutes.

5.7.4 For systems not supervised, the battery supply is capable of automatically maintaining the system in normal operation for a period of not less than 24 hours after the detection of a fault in the normal supply and the initiation of remedial action.

5.7.5 For unoccupied building with systems not supervised for periods > 24 hours, facilities are provided to give protection for a period of at least 24 hours after reoccupation, with sufficient capacity at the end of that time to sound an evacuation alarm in all zones for at least 30 minutes.

5.7.6 For systems backed up by standby generators, the battery supply is capable of maintaining operation for a period of not less than 6 hours, after which sufficient capacity should remain to provide an evacuation alarm in all zones for at least 30 minutes.
5.8 Cables, Wiring and Other Interconnections

5.8.1 Insulation test of all installed cables and wiring is made at 500 V DC and all insulation resistance are \(\geq 0.5 \, \text{M} \Omega \).

5.8.2 The completed circuit is tested at a voltage recommended by the equipment manufacturer.

5.8.3 Earth continuity and earth-loop impedance is tested and the results are in compliance with the EE Code.

VI Documentation

6.1 The following equipment list and catalogues are provided.

(a) alarm annunciation panel;
(b) repeater panels;
(c) detectors;
(d) manual call points;
(e) alarm sounders;
(f) visual fire alarm signal lamps;
(g) fire resistant cables.

6.2 F.S.D. approval/acceptance letters for the following equipment are provided.

(a) alarm annunciation panel;
(b) repeater panels;
(c) detectors;
(d) manual call points;
(e) alarm sounders;
(f) visual fire alarm signal lamps integrated with alarm sounders.

6.3 Test certificates on fire properties or F.S.D.’s prior acceptance letters for all the fire resistant cables used are provided.

6.4 Noise measurement (including background noise) records for alarm sounders are provided.

6.5 Calculation showing the required battery capacity is provided.

6.6 Letter certifying the completion of the DTL to the FSCC/Chubb Centre is provided.

6.7 Confirmation or certification on the compatibility is given by the manufacturers of the fire alarm system for all individual components of a fire alarm system such as fire detectors, alarm devices, manual call points, power supplies, interfacing equipment, remote indication and control panels.

6.8 F.S.D. approval letter on Time Related System/Transmission Delay Unit is provided.
6.9 A method of test recommended by the supplier to predict the failure of the battery during the intervals between routine tests is provided.

6.10 As-fitted fire service installation drawings including the followings are provided:
(a) schematic power supply and distribution diagrams and layout plans showing the types, size and routing of all power supply cables, fire resistant cables and wiring for the fire alarm and detection system;
(b) wiring diagrams and layout plans of all junction boxes and distribution boards;
(c) floor layout plans showing the location of each fire detection zone, detectors and detector types, manual call points, VFA signal lamps, alarm sounders, alarm annunciation panel and repeater panels.

VII Measuring and Testing Instrument/ Equipment Calibration (Optional for record only)

7.1 Calibration certificates showing that the following (please specify) testing and measuring instruments or equipment have been calibrated in the past 12 months are provided.

<table>
<thead>
<tr>
<th>Type</th>
<th>Model No.</th>
<th>Serial No.</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remark</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>............</td>
<td>............</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>..........</td>
<td>16.3.2.1</td>
</tr>
<tr>
<td>(b)</td>
<td>............</td>
<td>............</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>..........</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>............</td>
<td>............</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>..........</td>
<td>26.1</td>
</tr>
<tr>
<td>(d)</td>
<td>............</td>
<td>............</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>..........</td>
<td></td>
</tr>
<tr>
<td>(e)</td>
<td>............</td>
<td>............</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>..........</td>
<td></td>
</tr>
<tr>
<td>(f)</td>
<td>............</td>
<td>............</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>..........</td>
<td></td>
</tr>
<tr>
<td>(g)</td>
<td>............</td>
<td>............</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>..........</td>
<td></td>
</tr>
</tbody>
</table>

Test witnessed by:
Signature: ..

Name of Responsible Engineer: ..

Name of FSI Contractor: ..

Company Chop: ...

Registration No.: RCI/.......................... Date: ..

Test witnessed by:
Signature: ...
Abbreviations:

The following abbreviations shall be used in this checklist.

AC - Alternating Current
Ahr - Ampere-hour
Cat - Category
cd - Candela
dB(A) - Decibel (A-weighted)
DC - Direct Current
DTL - Direct Telephone Line
EE Code - Code of Practice for the Electricity (Wiring) Regulations issued by Electrical and Mechanical Services Department
FSCC - Fire Services Communication Centre
Code - Codes of Practice for Minimum Fire Service Installations and Equipment and Inspection, Testing and Maintenance of Installations and Equipment issued by Hong Kong Fire Services Department
FSI - Fire Service Installation
ft - Foot(Feet)
Hz - Hertz
F.S.D. - Hong Kong Fire Services Department
IEE - The Institution of Electrical Engineers
in - Inch(es)
KVA - Kilo-Volt-Ampere
m - Metre(s)
MICS - Mineral-Insulated Copper-Sheathed
MΩ - Megaohm(s)
N/A - Not Applicable
RAM - Random Access Memory
Ref or ref - Reference(s)
VFA - Visual Fire Alarm

< - Less than

\leq - Less than/equal to

> - More than

\geq - More than/equal to
APPENDIX 5

Checklist for Fire Hydrant and Hose Reel Installations

I. REFERENCE

Project: .. F.S.D. Ref.:
Type of Building: *Domestic/Industrial/Godown/Others
Address: ..
F.S.I. Drawing Ref. ..
The date of initial building plan submission to Building Authority ...
*Delete whichever not applicable.

II. F.S.I. DRAWINGS AGAINST BUILDING PLANS

F.S.D. File Ref. ...
2.1 Check nos. and locations of:
2.1.1 Fire service inlets [] [] []
2.1.2 Fire hydrants and hose reels [] [] []
2.1.3 Fixed fire pumps [] [] []
2.1.4 Intermediate booster pumps [] [] []
2.1.5 Water tank and capacity [] [] []

III. PLUMBING LINE DIAGRAM

3.1 CHECK:
3.1.1 Pipings are suitably connected to the fire pumps, fire hydrants, hose reels and fire service inlets. [] [] [] []
3.1.2 Size of the rising mains are correct. [] [] [] []
3.1.3 Size of the inter-connection header pipe(s) for fire service inlets is correct. [] [] [] []
3.1.4 By-pass pipings for intermediate booster pumps. [] [] [] []
3.1.5 F.S. appliance to be provided by F.S.D. to test the system. [] [] [] []
(to be confirmed by F.S.D.)

IV. ON SITE INSPECTION

4.1 FIRE HYDRANT
4.1.1 Outlets are of:
Male round thread [] or Female instantaneous []
4.1.2 Adaptable to F.S.D. equipment. [] [] [] []
4.1.3 Individually controlled by wheel operated screw valve designed to open by counter-clockwise rotation. [] [] [] []
4.1.4 The direction of opening engraved in both English and Chinese on the wheel of the valve. [] [] [] []
4.1.5 Not less than 800 mm nor more than 1200 mm above finished floor level. [] [] [] []
<table>
<thead>
<tr>
<th>Section</th>
<th>Requirement</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.6</td>
<td>Prominently sited [] or Recessed []</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.7</td>
<td>All round clearance to permit free use.</td>
<td>[]</td>
<td></td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>4.1.8</td>
<td>Not obstructing any door opening, or any exit route.</td>
<td>[]</td>
<td></td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>4.1.9</td>
<td>Not to be concealed by the leaves of an adjacent door when that door is opened.</td>
<td>[]</td>
<td></td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>4.1.10</td>
<td>Water supply is fed: By Gravity []</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.10</td>
<td>From fixed fire pump []</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>HOSE REEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.1</td>
<td>The drum is not less than 150 mm in diameter.</td>
<td>[]</td>
<td></td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>4.2.2</td>
<td>Internal bore of tubing is not less than 19 mm diameter.</td>
<td>[]</td>
<td></td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>4.2.3</td>
<td>Length of hose reel is not exceeding 30 metres in length.</td>
<td>[]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.4</td>
<td>Every part of the building can be reached by a nozzle.</td>
<td>[]</td>
<td></td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>4.2.5</td>
<td>Capable of projecting a 6-metre jet.</td>
<td>[]</td>
<td></td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>4.2.6</td>
<td>Orifice of nozzle is 4.5 mm.</td>
<td>[]</td>
<td></td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>4.2.7</td>
<td>Nozzle is fitted with simple two-way on/off valve and the valve is not spring loaded.</td>
<td>[]</td>
<td></td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>4.2.8</td>
<td>Control valves are of gate type or of simple two-way ball type.</td>
<td>[]</td>
<td></td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>4.2.9</td>
<td>Gate valves are closed by clockwise rotation.</td>
<td>[]</td>
<td></td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>4.2.10</td>
<td>Rising mains and associated pipework are not less than 40 mm nominal bore.</td>
<td>[]</td>
<td></td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>4.2.11</td>
<td>Pipes feeding individual hose reel are not less than 25 mm nominal bore.</td>
<td>[]</td>
<td></td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>4.2.12</td>
<td>Control valves are adjacent to the nozzles.</td>
<td>[]</td>
<td></td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>4.2.13</td>
<td>Nozzle and control valves are not more than 1 350 mm from the finished floor level.</td>
<td>[]</td>
<td></td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>4.2.14</td>
<td>Suitable guide ring is provided to permit easy withdrawal of the hose reel tubing.</td>
<td>[]</td>
<td></td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>4.2.15</td>
<td>An operation instruction is affixed prominently adjacent to each hose reel.</td>
<td>[]</td>
<td></td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>4.2.16</td>
<td>The notice is clearly marked with the standard wordings in English and Chinese characters of at least 5 mm high in red letters on white background or vice versa.</td>
<td>[]</td>
<td></td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>4.2.17</td>
<td>Manual fire alarm call points are sited at a prominent position near the hose reels.</td>
<td>[]</td>
<td></td>
<td>[]</td>
<td></td>
</tr>
</tbody>
</table>
4.2.18 The manual fire alarm call points are not more than 1200 mm above the finished floor level. [] [] [] [] ...
4.2.19 Upon actuation of any manual fire alarm call point in the building, the fixed fire pump shall come into operation regardless of the zoning of the fire alarm call point. [] [] [] [] ...
4.2.20 Door fitted to the hose reel cabinet. [] [] [] [] ...
4.2.20.1 Such doors cause no undue obstruction and no interference with any exit point when in open position. [] [] [] [] ...
4.2.20.2 Such doors cause no obstruction to the hose being run out in either directions. [] [] [] [] ...
4.2.20.3 Such doors bear the words “FIRE HOSE REEL” of at least 50 mm high. [] [] [] [] ...
4.2.20.4 No locking device is fitted to such doors. [] [] [] [] ...
4.2.20.5 Control valves and nozzles are sited in a discernible and accessible position of not more than 500 mm from the surface of the doors. [] [] [] [] ...
4.2.20.6 Operation instruction notice is affixed immediately below the words “FIRE HOSE REEL” on the outer surface of the door. [] [] [] [] ...
4.2.21 Hose reel of swinging cradle type. [] [] [] [] ...
4.2.21.1 When not in use the outer face of the reel is flush with the wall. [] [] [] [] ...
4.2.21.2 When required for use the cradle can be swung freely into the corridor or passage. [] [] [] [] ...
4.2.21.3 Striker provided inside the cabinet. [] [] [] [] ...
4.3 SUPPLY TANK
4.3.1 Correct location and adequate capacity of water tank. [] [] [] [] ...
4.3.2 Refilling system is in efficient working order. [] [] [] [] ...
4.3.3 Fire Service Completion Advice issued. [] [] [] [] ...
4.4 FIXED FIRE PUMP
4.4.1 Mode of power for driving the pump is:
4.4.1.1 Electricity [] or ..
4.4.2 Secondary power supply provided. [] [] [] [] ...
4.4.2.1 If no, diesel engine driven standby pump provided. [] [] [] [] ...
4.4.3 Where the motive power for any pump is not electricity, alternative means of starting the pump manually, in addition to manual fire alarm call points, are provided.
4.4.4 Starting instructions for diesel driven pump are prominently displayed in the pump room.
4.4.5 No automatic means of stopping the pump, other than by switching off at the pump control installed near the pump.
4.4.6 Manual fire alarm call points are wired for starting the pump.
4.4.7 The pumps are duplicated for duty and standby use.
4.4.8 The fire pump starters are wired through a selector switch for duty and standby pump selection.
4.4.9 The standby pump is energized within 15 seconds upon failure of the duty pump.
4.4.10 The motor/engine for the pump is rated to give 20% more power in addition to the hydraulic power required for the rated flow of the system.
4.4.11 Pumps are permanently primed.
4.4.12 Non-return valve(s) are provided to prevent water backflow into the water tank.
4.4.13 The status of each fire pump comprising “Power Supply On”, “Pump Running” and “Pump Failed” are monitored and displayed at the pump control panel in the pump room.
4.4.14 Such signals are repeated to:

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fire control room [] or A status panel at the main entrance of the building []

4.4.15 All fire pumps are housed in suitable enclosures and designed solely for accommodating pumps for fire service installations.
4.4.16 Pump enclosures are laid clear of any exit or normal communication routes through the premises.
4.4.17 Pump enclosures are clearly marked in English and Chinese characters.
<table>
<thead>
<tr>
<th>4.4.18</th>
<th>Pumps enclosures are suitably locked to prevent unauthorized tampering of the pumps.</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.19</td>
<td>Flow rate and pressure tested in accordance with Figure No. in ANNEX I.</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>.................</td>
</tr>
<tr>
<td>4.4.20</td>
<td>Running and static pressure at any hydrant outlet not exceeding 850 Kpa.</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>.................</td>
</tr>
<tr>
<td>4.5</td>
<td>INTERMEDIATE BOOSTER PUMP</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>.................</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Height between the topmost hydrant and the lowest F.S. inlet (m):</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>.................</td>
</tr>
<tr>
<td>4.5.2</td>
<td>No. of rising main:</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>.................</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Required aggregate flow (l/min):..</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>.................</td>
</tr>
<tr>
<td>4.5.4</td>
<td>The pumps are duplicated for duty and standby use.</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>.................</td>
</tr>
<tr>
<td>4.5.5</td>
<td>The standby pump is energized within 15 seconds upon failure of the duty pump.</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>.................</td>
</tr>
<tr>
<td>4.5.6</td>
<td>Intermediate booster pump arrangements:—</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>.................</td>
</tr>
<tr>
<td>4.5.6.1</td>
<td>One set consisting of duty and standby to feed all rising mains in the same system.</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>.................</td>
</tr>
<tr>
<td>4.5.6.2</td>
<td>Two/three pumps of same capacity using sequential starting as duty pumps with one standby to achieve required flow and pressure within 30 seconds.</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>.................</td>
</tr>
<tr>
<td>4.5.7</td>
<td>The motors driving the pumps are rated to give 20% more power in addition to the hydraulic power required for the rated flow.</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>.................</td>
</tr>
<tr>
<td>4.5.8</td>
<td>All pumps are permanently primed and electrically driven.</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>.................</td>
</tr>
<tr>
<td>4.5.9</td>
<td>Pump continues to run irrespective of power interruption when start button is activated.</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>.................</td>
</tr>
<tr>
<td>4.5.10</td>
<td>Start/stop push buttons with pump running indication light and buzzer provided adjacent to the fire service inlet.</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>.................</td>
</tr>
<tr>
<td>4.5.11</td>
<td>The status of each fire pump comprising “Power Supply On”, “Pump Running” and “Pump Failed” are monitored and displayed at the pump control panels in the pump enclosures.</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>.................</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.12</td>
<td>Such signals are repeated to:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fire control room [] or</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A status panel at the main entrance of the building []</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.13</td>
<td>All fire pumps are housed in suitable enclosures and designed solely for accommodating pumps for fire service installations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.14</td>
<td>Pump enclosures are suitably locked and laid clear of any exit or normal communication routes through the premises.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.15</td>
<td>Pump enclosures are clearly marked in English and Chinese characters.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.16</td>
<td>The intermediate booster pump utilized as the fixed fire pump.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.17</td>
<td>Flow rate and pressure tested in accordance with Figure No. in ANNEX I.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Floor level of tested hydrant:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flow (l/min):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pressure (Kpa):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5.18</td>
<td>Running and static pressure at any hydrant outlet not exceeding 850 Kpa.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>RISING MAIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.1</td>
<td>The nominal bore of the rising main, in the case of industrial/godown buildings:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not less than 100 mm []</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Each rising main supplies two hydrant outlets per floor []</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.2</td>
<td>The nominal bore of the rising main in other types of buildings:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not less than 80 mm []</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Each rising main supplies one hydrant outlet per floor []</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.3</td>
<td>Provision of by-pass for intermediate booster pump.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.4</td>
<td>All rising and down-coming mains are permanently primed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.5</td>
<td>Suitable air relief valves provided.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.6</td>
<td>Each rising main is connected to a fire service inlet.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6.7</td>
<td>Header pipe(s) provided to connect the fire service inlets to the rising mains.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.6.8 The diameter of the header pipe is:

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>For industrial/godown buildings not less than 150 mm nominal bore</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>.......................</td>
</tr>
<tr>
<td>For other buildings not less than 100 mm nominal bore</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>.......................</td>
</tr>
</tbody>
</table>

4.6.9 For godown/industrial buildings, a rising main provided for each staircase with a fire service inlet.

4.6.10 Number and location of fire service inlets are conforming to latest approved building plan.

4.7 FIRE SERVICE INLET

4.7.1 Suitably enclosed and protected.

4.7.2 Readily accessible by Fire Services personnel.

4.7.3 Not less than 600 mm nor more than 1000 mm above ground level.

4.7.4 A non-return valve provided for each inlet.

4.7.5 Each inlet is affixed with a metal identification plate raised or engraved with English and Chinese characters.

4.7.6 The frontage of each inlet enclosure is clearly and permanently indicated in English and Chinese characters “F.S. Inlet” (消防水喉) of not less than 50 mm high.

V. GENERAL COMMENTS & REMARKS

__
__
__
__
__
__

Test witnessed by:—

... (Signature) .. (Signature)

.................................. (Name in block letters) (Name in block letters)
F.S.I. Contractor’s Representative F.S.D. Inspecting Officer

Date ... Date ...
ANNEX 1 - FIGURES FOR EQUIPMENT ARRANGEMENT FOR TESTING OF FIRE PUMPS

GENERAL NOTES:

(i) The flow measuring devices may be placed at roof level for convenient discharge of water.
(ii) All hydrants under test shall be fully opened.
(iii) The pressure gauge shall be situated adjacent to the hydrant outlet under test.

LEGEND:

P : Pressure
F : Flow rate

FIG. 1.1

F : 450 l/min
P : 300 kPa

FIG. 1.2

F : 600 l/min
P : 350 kPa

FIG. 1.3

F : 900 l/min
P : 310 kPa
2. FIXED FIRE PUMP (INDUSTRIAL / GODOWN BUILDINGS)

(ANY OF THE FOLLOWING ARRANGEMENTS SHALL BE FOLLOWED)

FIG. 2.1

F: at 450 l/min
P: ≥ 350 KPa

FIG. 2.2

F: at 1350 l/min
P: ≥ 350 KPa

FIG. 2.3

F: at 1350 l/min
P: ≥ 330 KPa
3. INTERMEDIATE BOOSTER PUMP (BUILDINGS OTHER THAN INDUSTRIAL/ GODOWN)

FIG. 3.1 DOMESTIC AND OTHER BUILDINGS WITH SINGLE RISING MAIN (900 l/min)
TESTING EQUIPMENT TO BE ARRANGED IN ACCORDANCE WITH (1)

FIG. 3.2 OTHER BUILDINGS WITH TWO OR MORE RISING MAINS (1800 l/min)
TWO SETS OF RISING MAIN SHALL BE
TESTED SIMULTANEOUSLY IN ACCORDANCE WITH (1)
4. INTERMEDIATE BOOSTER PUMP (INDUSTRIAL / GODOWN BUILDINGS)

FIG. 4.1 SINGLE RISING MAIN (1350 l/min)
TESTING EQUIPMENT TO BE ARRANGED IN ACCORDANCE WITH (2)

--- Diagram ---

FIG. 4.2 TWO OR MORE RISING MAINS (2700 l/min)
TWO SETS OF RISING MAIN SHALL BE
TESTED SIMULTANEOUSLY IN ACCORDANCE WITH (2)

--- Diagram ---

P : 800 kPa AT
UPSTREAM OF F.S. INLET
FROM FIRE ENGINE

FROM FIRE ENGINE
Minimum Fire Resisting Cable Requirements for Fire Service Installations

<table>
<thead>
<tr>
<th>Item</th>
<th>Type of Fire Service Installations</th>
<th>Minimum Cable Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Audio/visual advisory systems</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Automatic fixed installations (other than sprinkler systems) using water</td>
<td>Power supply cables to conform with: (a) BS 6387 Cat. AWX or SWX; or (b) BS 6207 or BS EN 60702; or (c) Other international standards acceptable to the Director of Fire Services.</td>
</tr>
<tr>
<td>3.</td>
<td>Deluge systems</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Drencher systems</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Fire alarm systems</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Fire hydrant/hose reel systems</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Fixed foam systems</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Ring main systems with fixed pumps</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Water spray systems</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Emergency generators</td>
<td>Power supply cables (from emergency generator to main switchboard) to conform with: (a) BS 6387 Cat. CWZ; or (b) BS 6207 or BS EN 60702; or (c) Other international standards acceptable to the Director of Fire Services.</td>
</tr>
<tr>
<td>11.</td>
<td>Fireman’s lifts</td>
<td>Power supply cables (from the main switchboard to the main switch for lift power circuit and car lighting etc., in the lift machine room) to conform with: (a) BS 6387 Cat. CWZ; or (b) BS 6207 or BS EN 60702; or (c) Other international standards acceptable to the Director of Fire Services.</td>
</tr>
<tr>
<td>12.</td>
<td>Pressurization of staircases</td>
<td>Power supply cables to conform with: (a) BS 6387 Cat. CWZ; or (b) BS 6207 or BS EN 60702; or (c) Other international standards acceptable to the Director of Fire Services.</td>
</tr>
<tr>
<td>Item</td>
<td>Type of Fire Service Installations</td>
<td>Minimum Cable Requirements</td>
</tr>
<tr>
<td>------</td>
<td>----------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>13.</td>
<td>Smoke extraction systems</td>
<td>Power supply cables to conform with:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(a) BS 6387 Cat. CWZ; or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) BS 6207 or BS EN 60702; or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c) Other international standards acceptable to the Director of Fire Services.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control cables to conform with:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(a) BS 6387 Cat. AWX or SWX; or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) BS 6207 or BS EN 60702; or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c) Other international standards acceptable to the Director of Fire Services.</td>
</tr>
</tbody>
</table>

Remarks:

Cables under any of the following conditions may be exempted from the above minimum requirements:

(a) Cables installed and terminated in switch/plant room;
(b) Cables inside concealed metallic or PVC conduits which are embedded by plaster/concrete to a depth of at least 12 mm;
(c) Cables inside underground cable ducts or reinforced concrete cable trenches;
(d) Cables embedded in the soil to a depth of at least 300 mm;
(e) Cables within fire resisting cable ducts and are not mixed with other services (e.g. switchgear, etc); the fire resistance of cable ducts to be not less than that of the building compartment.
APPENDIX 7

Notification to FSD on the occasion building FSI is shut down for works

Part I

<table>
<thead>
<tr>
<th>Building Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Address:</td>
<td></td>
</tr>
</tbody>
</table>

Incorporated Owners (I.O.):

| I.O. Tel. No.: | |

Brief description of the works:

<table>
<thead>
<tr>
<th>System</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire Hydrant/Hose Reel System</td>
<td></td>
</tr>
<tr>
<td>Automatic Sprinkler System</td>
<td></td>
</tr>
<tr>
<td>Street Fire Hydrant</td>
<td></td>
</tr>
<tr>
<td>Water Spray System</td>
<td></td>
</tr>
</tbody>
</table>

Date commenced:

| Estimated Completion Date: | |

Name of FSI / Works Contractor:

Registration No.:

(FSI Contractor only):

| Contact Tel. No.: | |

To be completed upon completion of works then fax to FSD of FSCC again.

ACTUAL COMPLETION DATE:

Signature & Company chop

See FSD Circular Letter No. 3/2008
Notes on Fire Extinguishers and Fire Blankets (Suitability and Maintenance)

I. CARBON DIOXIDE TYPE EXTINGUISHERS

Use:
On electrical fires, flammable liquids, delicate equipment, important documents, or fires in confined spaces.

Note:
Vapours will asphyxiate. Withdraw to open air after use.

Maintenance:
This type of extinguisher should be examined every 12 months and the following maintenance carried out :-

(i) The total weight should be checked against that recorded when the extinguisher was put into service. If a loss of weight of more than 10 per cent is detected, the extinguisher should be discharged and returned to the suppliers for examination, test and recharging.

(ii) The body of the extinguisher should be examined and, if there are signs of damage or extensive external corrosion, the extinguisher should be discharged and returned to suppliers for examination, test and recharging.

(iii) The discharge horn and hose should be checked to see that it moves freely and should be replaced if damaged is detected.

(iv) Hydraulic pressure test should be carried out every five years on the cylinder in accordance with the manufacturers' instructions. Extreme care should be exercised when preparing and conducting the test.

(v) Unserviceable extinguisher should be discharged prior to disposal.
II. WATER TYPE EXTINGUISHERS

Use:
On fires involving woods, textiles and paper.

Never:
On fires involving electrical or flammable liquids or metals.

Maintenance:
This type of extinguisher should be examined every 12 months and the following maintenance carried out :-

(GAS-CARTRIDGE TYPE)

(i) The vent holes in the cap should be checked for cleanliness and free from obstruction.

(ii) Remove the headcap to check the liquid level. The liquid should be topped up as necessary.

(iii) The nozzle, strainer and internal discharge tube should be checked for cleanliness and free from obstruction. Defective items shall be replaced.

(iv) The gas cartridge should be weighed and the weight checked against that marked on the cartridge. The cartridge should be renewed if a loss of more than 10 per cent of the contents is recorded.

(v) No corrosion, damage or rust should be visible either externally or internally. Special attention should be paid to the concealed parts of the container.

(vi) Before the headcap is replaced and while the gas cartridge is unscrewed therefrom, the plunger or other operating device should be checked to see that it operates freely. The washer should be examined and replaced if necessary. The cap should then be tightly screwed to the container to form a gas-tight joint.

(vii) Test 50 per cent of extinguishers by discharge every year in rotation so that all extinguishers are tested by discharge every two years. Should any extinguisher fail in the test, all cartridges in the remainder should be replaced. Extreme care should be exercised during preparing and conducting discharge test. Prior to discharging, the container should be ensured in good condition such as no corrosion, damage or rust should be visible externally or internally on any part of the container; otherwise hydraulic pressure test should then be carried out to confirm the container structurally sound. Should there be doubt about the condition of the container, hydraulic pressure test shall be conducted instead.

(viii) Corroded parts should be cleaned up and refinished after the hydraulic pressure test.

(ix) Hydraulic pressure test should be carried out every five years on the container in accordance with the manufacturers' instructions. Extreme care should be exercised when preparing and conducting the test.
(x) Before carrying out hydraulic pressure test, remove the headcap, disconnect the gas cartridge and clear the contents. Never empty the contents by discharging the extinguisher.

(xi) Also, before disposal of unserviceable fire extinguisher, remove the headcap, disconnect the gas cartridge and clear the contents. Never empty the contents by discharging the extinguisher.

(STORED-PRESSURE TYPE)

(i) The pressure indicating device should be checked to see the correct pressure is being maintained within the extinguisher body.

(ii) The nozzle or branch-pipe (if fitted) and the pressure releasing valve in the cap should be checked for cleanliness and free from obstruction. Defective items shall be replaced.

(iii) No corrosion, damage or rust should be visible externally on any part of the container. Special attention should be paid to the concealed parts of the container.

(iv) Test 50 per cent of extinguishers by discharge every year in rotation so that all extinguishers are tested by discharge every two years. Should any extinguisher fail in the test, all extinguishers should be overhauled and recharged.

(v) Prior to recharging, the container should be ensured in good condition such as no corrosion, damage or rust was noted; otherwise hydraulic pressure test should be conducted to confirm the container structurally sound.

(vi) Hydraulic pressure test should be carried out every five years on the container in accordance with the manufacturers’ instructions. Extreme care should be exercised when preparing and conducting the test.

(vii) Unserviceable extinguisher should be discharged prior to disposal.
III. DRY POWDER TYPE EXTINGUISHERS

Use:
On most fires, flammable liquids, metal fires or electrical fires.

Maintenance:
This type of extinguisher should be examined every 12 months and the following maintenance carried out :

(GAS-CARTRIDGE TYPE)

(i) The vent holes in the cap should be checked for cleanliness and free from obstruction.

(ii) The extinguisher should be weighed to check that it contains the correct weight of powder. The weight when fully charged should be recorded at the time of charging. If the weight is found to have dropped by more than 10 per cent, the dry powder should be replaced by a fresh charge. Care should be taken not to mix different types of dry powder because they could react with one another.

(iii) The powder should be agitated to ensure it is free from caking.

(iv) Remove the headcap to check the condition of powder. The chemical should be renewed if it is not in good condition.

(v) The nozzle and discharge control (if fitted) should be checked for cleanliness and free from obstruction. Defective items shall be replaced.

(vi) The gas cartridge should be weighed and the weight checked against that marked on the cartridge. The cartridge should be renewed if a loss of more than 10 per cent of the contents is recorded.

(vii) No corrosion, damage or rust should be visible either externally or internally. Special attention should be paid to the concealed parts of the container.

(viii) Before the headcap is replaced and while the gas cartridge is unscrewed therefrom, the plunger or other operating device should be checked to see that it operates freely. The washer should be examined and replaced if necessary. The cap should then be tightly screwed to the container to form a gas-tight joint.

(ix) Test 50 per cent of extinguishers by discharge every year in rotation so that all extinguishers are tested by discharge every two years. Should any extinguisher fail in the test, all cartridges in the remainder should be replaced. Extreme care should be exercised during preparing and conducting discharge test. Prior to discharging, the container should be ensured in good condition such as no corrosion, damage or rust should be visible externally or internally on any part of the container; otherwise hydraulic pressure test should then be carried out to confirm the container structurally sound. Should there be doubt about the condition of the container, hydraulic pressure test shall be conducted instead.

(x) Corroded parts should be cleaned up and refinished after the hydraulic pressure test.
(xi) Hydraulic pressure test should be carried out every five years on the container in accordance with the manufacturers' instructions. Extreme care should be exercised when preparing and conducting the test.

(xii) Before carrying out hydraulic pressure test, remove the headcap, disconnect the gas cartridge and the dry powder should be collected for subsequent re-cycling/disposal. Never empty the contents by discharging the extinguisher.

(xiii) Also, before disposal of unserviceable fire extinguisher, remove the headcap, disconnect the gas cartridge and the dry powder should be collected for subsequent re-cycling/disposal. Never empty the contents by discharging the extinguisher.

(STORED-PRESSURE TYPE)

(i) The extinguisher should be weighed to check it contains the correct weight of powder. If the weight is found to have dropped by more than 10 per cent, the dry powder should be replaced by a fresh charge. Care should be taken not to mix different types of dry powder because they could react with one another.

(ii) The pressure indicating device should be checked to see the correct pressure is being maintained within the extinguisher body.

(iii) The nozzle or branch-pipe (if fitted) and the pressure releasing valve in the cap should be checked for cleanliness and free from obstruction. Defective items shall be replaced.

(iv) No corrosion, damage or rust should be visible externally on any part of the container. Special attention should be paid to the concealed parts of the container.

(v) Test 50 per cent of extinguishers by discharge every year in rotation so that all extinguishers are tested by discharge every two years. The dry powder should be discharged to an enclosure for collection and subsequent re-cycling/disposal. Should any extinguisher fail in the test, all extinguishers should be overhauled and recharged.

(vi) Prior to recharging, the container should be ensured in good condition such as no corrosion, damage or rust was noted; otherwise hydraulic pressure test should be conducted to confirm the container structurally sound.

(vii) Hydraulic pressure test should be carried out every five years on the container in accordance with the manufacturers' instructions. Extreme care should be exercised when preparing and conducting the test.

(viii) Unserviceable extinguisher should be discharged prior to disposal. The dry powder should be discharged to an enclosure for collection and subsequent re-cycling/disposal.

NOTE:

(a) Dry powder extinguishers must be thoroughly dry internally before they are recharged.

(b) Advice should be obtained from the Fire Services Department as to the possible reaction between the powder or expellant and the material to protected.
IV. CLEAN AGENT FIRE EXTINGUISHERS

Use:
On electrical fires, flammable liquids, delicate equipment, important documents.

Maintenance:
This type of extinguisher should be examined every 12 months and the following maintenance carried out :-

(PORTABLE TYPE)

(i) The pressure indicating device should be checked to see the correct pressure is being maintained within the extinguisher body.

(ii) The extinguisher should be weighed to check against the total weight record when it is put into service. If a loss of weight of more than 10 per cent is detected, the extinguisher should be discharged to a closed recycling system and returned to the supplier for examination, test and recharging.

(iii) The nozzle or branch-pipe (if fitted) and the pressure releasing valve in the cap should be checked for cleanliness and free from obstruction. Defective items shall be replaced.

(iv) No corrosion, damage or rust should be visible externally on any part of the container. Special attention should be paid to the concealed parts of the container.

(v) If there are signs of damage or external corrosion, the extinguisher should be discharged to a closed recycling system and returned to the suppliers for examination, test and recharging.

(vi) Hydraulic pressure test should be carried out every five years on the container in accordance with the manufacturers' instructions. Extreme care should be exercised when preparing and conducting the test.

(vii) Unserviceable extinguisher should be discharged to a closed recycling system prior to disposal.

(FIXED SPRAYER UNIT)

(i) The pressure indicating device (if fitted) should be checked to see the correct pressure is being maintained within the extinguisher body.

(ii) The extinguisher should be weighed to check against the total weight record when it is put into service. If a loss of weight of more than 10 per cent is detected, the extinguisher should be discharged to a closed recycling system and returned to the supplier for examination, test and recharging.

(iii) The deflector and the sensing element should be checked and cleaned.

(iv) No corrosion, damage or rust should be visible externally on any part of the container. Special attention should be paid to the concealed parts of the container.
(v) If there are signs of damage or external corrosion, the extinguisher should be discharged to a closed recycling system and returned to the suppliers for examination, test and recharging.

(vi) Hydraulic pressure test should be carried out every five years on the container in accordance with the manufacturers' instructions. Extreme care should be exercised when preparing and conducting the test.

(vii) Unserviceable extinguisher should be discharged to a closed recycling system prior to disposal.
V. FOAM (CHEMICAL) TYPE EXTINGUISHERS

Use:
On fires involving flammable liquids.

Never:
On electrical fires.

Maintenance:
This type of extinguisher should be examined every 12 months and the following maintenance carried out:

(i) The nozzle and the vent holes in the cap should be checked for cleanliness and free from obstruction.

(ii) Remove the headcap to check the liquid levels in the body and in the inner container. Any slight loss may be made up with water; otherwise a new charge should be used.

(iii) No corrosion, damage or rust should be visible either externally or internally. Special attention should be paid to the concealed parts of the container.

(iv) Before the headcap is replaced, the plunger, the headcap lever for the sealing device or other operating device should be checked to see that it operates freely. The washer should be replaced if necessary and the cap should then be tightly screwed to the container to form a gas-tight joint.

(v) Test 50 per cent of extinguishers by discharge every year in rotation so that all extinguishers are tested by discharge every two years. Should any extinguisher fail in the test, all should be tested by discharge. Extreme care should be exercised during preparing and conducting discharge test. Prior to discharging, the container should be ensured in good condition such as no corrosion, damage or rust should be visible externally or internally on any part of the container; otherwise hydraulic pressure test should then be carried out to confirm the container structurally sound. Should there be doubt in the condition of the container, hydraulic pressure test shall be conducted instead.

(vi) Corroded parts should be cleaned up and refinished after the hydraulic pressure test.

(vii) Hydraulic pressure test should be carried out every five years on the outer container in accordance with the manufacturers' instructions; the inner container should be examined to ensure it is in good condition and not leaking. Extreme care should be exercised when preparing and conducting the test.

(viii) Before carrying out hydraulic pressure test, remove the headcap and clear the contents. Never empty the contents by discharging the extinguisher.

(ix) Also, before disposal of unserviceable extinguisher, remove the headcap and clear the contents. Never empty the contents by discharging the extinguisher.

NOTE:
Inverted type chemical foam extinguishers have ceased production and not permitted for sale. However, products already sold may continued to be used.
VI. FOAM (MECHANICAL) TYPE EXTINGUISHERS

Use:
On fires involving flammable liquids.

Never:
On electrical fires.

Maintenance:
This type of extinguisher should be examined every 12 months and the following maintenance carried out :-

(GAS-CARTRIDGE TYPE)

(i) The vent holes in the cap should be checked for cleanliness and free from obstruction.

(ii) Remove the headcap to check the liquid level. If the liquid level was found to have dropped by more than 10 per cent, the foam concentrate or foam solution as appropriate should be replaced by a fresh charge.

(iii) The branchpipe, strainer and internal discharge tube should be checked for cleanliness and free from obstruction. Defective items shall be replaced.

(iv) The gas cartridge should be weighed and the weight checked against that marked on the cartridge. The cartridge should be renewed if a loss of more than 10 per cent of the contents is recorded.

(v) No corrosion, damage or rust should be visible either externally or internally. Special attention should be paid to the concealed parts of the container.

(vi) Before the headcap is replaced and while the gas cartridge is unscrewed therefrom, the plunger or other operating device should be checked to see that it operates freely. The washer should be examined and replaced if necessary. The cap should then be tightly screwed to the container to form a gas-tight joint.

(vii) Test 50 per cent of extinguishers by discharge every year in rotation so that all extinguishers are tested by discharge every two years. Should any extinguisher fail in the test, all cartridges in the remainder should be replaced. Extreme care should be exercised during preparing and conducting discharge test. Prior to discharging, the container should be ensured in good condition such as no corrosion, damage or rust should be visible externally or internally on any part of the container; otherwise hydraulic pressure test should then be carried out to confirm the container structurally sound. Should there be doubt about the condition of the container, hydraulic pressure test shall be conducted instead.

(viii) Corroded parts should be cleaned up and refinished after the hydraulic pressure test.

(ix) Hydraulic pressure test should be carried out every five years on the container in accordance with the manufacturers' instructions. Extreme care should be exercised when preparing and conducting the test.
(x) Before carrying out hydraulic pressure test, remove the headcap, disconnect the gas cartridge and clear the contents. Never empty the contents by discharging the extinguisher.

(xi) Also, before disposal of unserviceable fire extinguisher, remove the headcap, disconnect the gas cartridge and clear the contents. Never empty the contents by discharging the extinguisher.

(STORED-PRESSURE TYPE)

(i) The pressure indicating device should be checked to see the correct pressure is being maintained within the extinguisher body.

(ii) The nozzle or branch-pipe (if fitted) and the pressure releasing valve in the cap should be checked for cleanliness and free from obstruction. Defective items shall be replaced.

(iii) No corrosion, damage or rust should be visible externally on any part of the container. Special attention should be paid to the concealed parts of the container.

(iv) Test 50 per cent of extinguishers by discharge every year in rotation so that all extinguishers are tested by discharge every two years. Should any extinguisher failed in the test, all extinguishers should be overhauled and recharged.

(v) Prior to recharging, the container should be ensured in good condition such as no corrosion, damage or rust was noted; otherwise hydraulic pressure test should be conducted to confirm the container structurally sound.

(vi) Hydraulic pressure test should be carried out every five years on the container in accordance with the manufacturers' instructions. Extreme care should be exercised when preparing and conducting the test.

(vii) Unserviceable extinguisher should be discharged prior to disposal.
VII. FIRE BLANKETS

Use:
On fires involving flammable liquids, such as small fires in the kitchen and laboratory.

Method For Use:
Drape the blanket over the flames to seal off air. Switch off heat and leave in position until cool.

Maintenance:
This blanket should be examined every 12 months or after use in fire. The following maintenance should be carried out:-

(i) Check for any deterioration.
(ii) Cleaning in accordance with the manufacturer's instructions as when necessary.
(iii) If manufacturer’s instructions are not available, fire blanket can be washed (soak overnight in detergent, gently hand rinse in warm water). Do not machine wash or dry clean.

REMARKS:
(i) Fire blankets are classified into two categories, namely:-
 "Heavy Duty" fire blankets (BS 7944:1999); and
 "Light Duty" fire blankets (BS EN 1869:1997)
(ii) Only "Heavy Duty" and "reusable" fire blankets will be approved as a Fire Services Standard Requirement.
(iii) "Light Duty" fire blankets may be accepted for use on a private basis and should be disposed of after use.
VIII. SAMPLE MAINTENANCE LABEL (保養標籤樣本)

Company Name

Registration No. RC3/

Maintenance Date

Next Maintenance

Last Pressure Test

Pressure test within 5 years for all fire extinguishers

Year of Manufacture

Maintenance Result FAIL PASS

All items must be entered. 所有項目必需填寫

(White background label with black coloured characters)
(白色底標籤上印上黑色字)